分析 令x=1,可得:(a+1)(2-1)5=2,解得a=1.再利用(2x-$\frac{1}{x}$)5的展開式的通項公式進(jìn)而得出.
解答 解:令x=1,可得:(a+1)(2-1)5=2,解得a=1.
(2x-$\frac{1}{x}$)5的展開式的通項公式:Tr+1=${∁}_{5}^{r}$$(2x)^{5-r}(-\frac{1}{x})^{r}$=(-1)r25-r${∁}_{5}^{r}$x5-2r,
令5-2r=1或-1,分別解得:r=2,3.
∴該展開式中常數(shù)項為:${2}^{3}{∁}_{5}^{2}×1$-1×${2}^{2}{∁}_{5}^{3}$=40,
故答案為:40.
點(diǎn)評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4\sqrt{2}}{9}$ | B. | $\frac{4\sqrt{2}}{9}$ | C. | -$\frac{4\sqrt{2}}{7}$ | D. | $\frac{4\sqrt{2}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥1 | B. | a≤1 | C. | a≥-3 | D. | a≤-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com