5.在直角坐標(biāo)系xOy中,圓M:(x-a)2+(y+a-3)2=1(a>0),點(diǎn)N為圓M上任意一點(diǎn),若以N為圓心,ON為半徑的圓與圓M至多有一個(gè)公共點(diǎn),則a的最小值為3.

分析 求出圓的圓心與半徑,利用ON與已知圓的直徑列出關(guān)系式求解即可.

解答 解:圓M:(x-a)2+(y+a-3)2=1(a>0),圓的圓心(a,3-a),半徑為1,
點(diǎn)N為圓M上任意一點(diǎn),若以N為圓心,ON為半徑的圓與圓M至多有一個(gè)公共點(diǎn),
|ON|≥2,
|ON|的最小值為:|OM|-1,
可得$\sqrt{{a}^{2}+(a-3)^{2}}$-1≥2,
解得a≥3或a≤0(舍去).
a的最小值為:3.
故答案為:3.

點(diǎn)評(píng) 本題考查圓的方程的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.動(dòng)點(diǎn)P(x,y)到點(diǎn)O(0,0)的距離是到點(diǎn)A(3,-3)的距離的$\sqrt{2}$倍,則點(diǎn)P的軌跡方程是( 。
A.x2-12y+y2+12y+36=0B.x2+6x+y2-12y+36=0
C.x2+12x+y2-12y+36=0D.x2-6x+y2+6y+18=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若(a+b):(b+c):(c+a)=5:6:7,求$\frac{2sinA-sinB}{sin2C}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知(1-2x+3x27=a0+a1x+a2x2+…+a13x13+a14x14
求:(1)a1+a2+…+a14;
(2)a1+a3+a5+…+a13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.(a+2)(2a+b+1)5的展開(kāi)式中a3b3的系數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知sinφ=$\frac{3}{5}$,且φ∈($\frac{π}{2}$,π),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對(duì)稱軸之間的距離等于$\frac{π}{2}$,則f($\frac{π}{8}$)的值為( 。
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=$\frac{cosθ}{2+sinθ}$(θ∈R)的值域?yàn)閇-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知(1+px)(1-x+x28的展開(kāi)式中x4項(xiàng)的系數(shù)是42,則p的值是( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,有一正三角形鐵皮余料,欲利用余料剪裁出一個(gè)矩形(矩形的一個(gè)邊在三角形的邊上),并以該矩形制作一鐵皮圓柱的側(cè)面.問(wèn):如何剪裁,才能使得鐵皮圓柱的體積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案