13.已知(1-2x+3x27=a0+a1x+a2x2+…+a13x13+a14x14
求:(1)a1+a2+…+a14;
(2)a1+a3+a5+…+a13

分析 (1)利用賦值法求出a0,然后求解a1+a2+…+a14;
(2)利用賦值法x=1,和x=1代入求解即可.

解答 解:(1)(1-2x+3x27=a0+a1x+a2x2+…+a13x13+a14x14
令x=0可得a0=1,x=1可得:a0+a1+a2+…+a14=(1-2+3)7=27
∴a1+a2+…+a14=27-1=127.
(2)由(1)可知:x=1可得:a0+a1+a2+…+a14=(1-2+3)7=27
x=-1可得:a0-a1+a2+…+a14=(1+2+3)7=67
兩式相減可得a1+a3+a5+…+a13=$\frac{1}{2}$(27-67)=-139904.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,賦值法的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某小區(qū)的6個(gè)停車(chē)位置,有3輛汽車(chē)需要停放,若要使三個(gè)空位連在一起,則停放的方法數(shù)為24(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.由曲線y=x2和曲線y=$\sqrt{1-(x-1)^{2}}$所圍成的圖形的面積為( 。
A.$\frac{π}{4}$-$\frac{1}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)某種產(chǎn)品50件為一批,已知每批產(chǎn)品中沒(méi)有次品的概率為0.35,有1,2,3,4件次品的概率分別為0.25,0.2,0.18,0.02,求從某批產(chǎn)品中抽取10件中有1件是次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,則x2+y2的取值范圍為[0,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.點(diǎn)A、B、C是拋物線y2=4x上不同的三點(diǎn),若點(diǎn)F(1,0)滿(mǎn)足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,則△ABF面積的最大值為(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{6}$C.$\frac{3\sqrt{6}}{2}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在直角坐標(biāo)系xOy中,圓M:(x-a)2+(y+a-3)2=1(a>0),點(diǎn)N為圓M上任意一點(diǎn),若以N為圓心,ON為半徑的圓與圓M至多有一個(gè)公共點(diǎn),則a的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}滿(mǎn)足an+1=2+an,且a2=-1,則a8=( 。
A.13B.11C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若tan(α+β)=$\frac{3}{5}$,tanβ=$\frac{1}{3}$,則tanα=$\frac{2}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案