A. | 7π | B. | 9π | C. | 11π | D. | 13π |
分析 先求出圓M的半徑,然后根據(jù)勾股定理求出OM的長(zhǎng),找出二面角的平面角,從而求出ON的長(zhǎng),最后利用垂徑定理即可求出圓N的半徑,從而求出面積.
解答 解:∵圓M的面積為4π,
∴圓M的半徑為2,
根據(jù)勾股定理可知OM=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∵過(guò)圓心M且與α成30°二面角的平面β截該球面得圓N,
∴∠OMN=60°,
在直角三角形OMN中,ON=2$\sqrt{3}×\frac{\sqrt{3}}{2}$=3,
∴圓N的半徑為$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∴圓N的面積為:7π.
故選:A.
點(diǎn)評(píng) 本題考查二面角的平面角,以及解三角形知識(shí),同時(shí)考查空間想象能力,分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{3+\sqrt{3}}}{2}$ | B. | $\frac{{4+\sqrt{3}}}{4}$ | C. | $\frac{{19\sqrt{3}}}{12}$ | D. | $\frac{{11\sqrt{3}}}{6}+\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com