15.函數(shù)y=2tan($\frac{π}{3}-\frac{x}{2}$)的定義域是{x|x≠$-\frac{π}{3}-\frac{kπ}{2}$,k∈Z},最小正周期是2π.

分析 根據(jù)正切函數(shù)的圖象和性質(zhì)求解即可.

解答 解:由$\frac{π}{3}-\frac{x}{2}$≠$\frac{π}{2}$+kπ,k∈Z,
即-$\frac{x}{2}$≠$\frac{π}{6}$+kπ,
解得x≠$-\frac{π}{3}-\frac{kπ}{2}$,
故函數(shù)的定義域?yàn)閧x|x≠$-\frac{π}{3}-\frac{kπ}{2}$,k∈Z},
函數(shù)的周期為T=$\frac{π}{|-\frac{1}{2}|}$=2π,
故答案為:{x|x≠$-\frac{π}{3}-\frac{kπ}{2}$,k∈Z};2π.

點(diǎn)評(píng) 本題主要考查正切函數(shù)的圖象和性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如果y=f(x)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質(zhì)”;
②若奇函數(shù)y=f(x)具有“P(2)性質(zhì)”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質(zhì)”,圖象關(guān)于點(diǎn)(1,0)成中心對(duì)稱,且在(-1,0)上單調(diào)遞減,則y=f(x)在(-2,-1)上單調(diào)遞減,在(1,2)上單調(diào)遞增;
④若不恒為零的函數(shù)y=f(x)同時(shí)具有“P(0)性質(zhì)”和“P(3)性質(zhì)”,且函數(shù)y=g(x)對(duì)?x1,x2∈R,都有|f(x1)-f(x2)|≥|g(x1)-g(x2)|成立,則函數(shù)y=g(x)是周期函數(shù).
其中正確的是①③④(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax2-bx-1,其中a、b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓O的方程為x2+y2=1,設(shè)圓O與x軸交于P,Q兩點(diǎn),M是圓O上異于P,Q的任意一旦,直線PM交直線l:x=3于點(diǎn)P′,直線QM交直線l于點(diǎn)Q′,求證:以P′Q′為直徑的圓C總過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.sin245°sin125°+sin155°sin35°的值是( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若α是第二象限角,則-α,π+α,π-α,$\frac{π}{2}$+α分別是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若θ是第四象限角,且sin$\frac{θ}{2}$-cos$\frac{θ}{2}$=$\sqrt{1-2sin\frac{θ}{2}cos\frac{θ}{2}}$,則$\frac{θ}{2}$是第二象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若(x3+x-2n的展開式中只有第6項(xiàng)系數(shù)最大,則展開式中的常數(shù)項(xiàng)是210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a、b∈R,ab≠0,函數(shù)f(x)=$\frac{ax}{x+b}$圖象的對(duì)稱中心坐標(biāo)為(-1,1).
(1)求a、b的值;
(2)若P(x,y)是函數(shù)y=f(x)圖象上的動(dòng)點(diǎn),且x<-1,試求OP(O為坐標(biāo)原點(diǎn))的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案