18.在△ABC中,a=2,A=30°,C=45°,則S△ABC=( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}+1$D.$\frac{1}{2}({\sqrt{3}+1})$

分析 由正弦定理可得$\frac{2}{sin30°}=\frac{c}{sin45°}$求出c值,利用兩角和正弦公式求出sinB的值,由S△ABC =$\frac{1}{2}$acsinB 運(yùn)算結(jié)果.

解答 解:B=180°-30°-45°=105°,由正弦定理可得:$\frac{2}{sin30°}=\frac{c}{sin45°}$,
∴c=2$\sqrt{2}$.
sinB=sin(60°+45°)=$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$+$\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
則△ABC的面積S△ABC =$\frac{1}{2}$acsinB=$\frac{1}{2}$×2×2$\sqrt{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\sqrt{3}$+1,
故選:C.

點(diǎn)評(píng) 本題考查兩角和正弦公式,正弦定理的應(yīng)用,求出sinB的值,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=2,A=2B,那么b的取值范圍是( 。
A.(0,$\sqrt{2}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,2)D.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{4}$=1(a>0)的離心率為$\sqrt{5}$,拋物線C:x2=2py(p>0)的焦點(diǎn)在雙曲線的頂點(diǎn)上.
(1)求拋物線C的方程;
(2)過(guò)M(-1,0)的直線l與拋物線C交于E,F(xiàn)兩點(diǎn),有過(guò)E,F(xiàn)作拋物線C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sin($\frac{π}{4}$-x)•sin(x+$\frac{π}{4}$)+2$\sqrt{3}$sinxcosx.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,再將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[0,$\frac{5π}{6}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知以坐標(biāo)軸為對(duì)稱(chēng)軸且離心率等于2的雙曲線的一個(gè)焦點(diǎn)與拋物線x=$\frac{1}{8}$y2的焦點(diǎn)重合,則該雙曲線的方程為$\frac{{x}^{2}}{1}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.參數(shù)a分別取何值時(shí),關(guān)于x的方程$\frac{lo{g}_{a}x}{lo{g}_{a}2}$+$\frac{lo{g}_{x}(2a-x)}{lo{g}_{x}2}$=$\frac{1}{lo{g}_{({a}^{2}-1)}2}$,
(1)有解;
(2)僅有一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若x≥0,y≥0,且x+2y=1,則4x+y2的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.平面上$\overrightarrow{a}$,$\overrightarrow$滿足|2$\overrightarrow{a}$+$\overrightarrow$|=1,|$\overrightarrow{a}-3\overrightarrow$|=1,則|$\overrightarrow{a}$|的范圍是[$\frac{2}{7}$,$\frac{4}{7}$],則|$\overrightarrow$|的范圍是[$\frac{1}{7}$,$\frac{3}{7}$],|$\overrightarrow{a}+\overrightarrow$|的取值范圍是[$\frac{3}{7}$,$\frac{5}{7}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某大學(xué)進(jìn)行自主招生考試面試,需將每5位考生組成一組進(jìn)行口頭答題,每位考生可以從5個(gè)備選題目中任選1題口頭作答,則至少有1個(gè)題目沒(méi)有被這5個(gè)考生選中的情況有(  )
A.3005種B.120種C.1500種D.400種

查看答案和解析>>

同步練習(xí)冊(cè)答案