5.在△ABC中,若|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,∠BAC=60°,則$\overrightarrow{BA}$•$\overrightarrow{AC}$=-1.

分析 運(yùn)用向量的數(shù)量積的定義可得$\overrightarrow{BA}$•$\overrightarrow{AC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(180°-60°),代入計(jì)算即可得到所求值.

解答 解:由|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,∠BAC=60°,
可得$\overrightarrow{BA}$•$\overrightarrow{AC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(180°-60°)
=1•2•(-$\frac{1}{2}$)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義,注意向量的夾角的定義,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)等差數(shù)列{an}中,a5=11,a8=5,求該數(shù)列的通項(xiàng)公式;
(2)已知等差數(shù)列{an}中,a1=2,a2和a3是兩個(gè)連續(xù)正整數(shù)的平方,求該數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.$\frac{sin(π-α)}{sin(-α)}$+$\frac{cos(π+α)}{cos(π-α)}$+$\frac{tan(π-α)}{tan(-α)}$+$\frac{cot(-α)}{cot(π+α)}$=( 。
A.2B.-2C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)集合S?N*,S≠∅,且滿足下面兩個(gè)條件:
①1∉S;②若x∈S,則2+$\frac{12}{x-2}$∈S.
(1)S能否為單元素集合,為什么?
(2)求出只含有兩個(gè)元素的集合S;
(3)滿足題設(shè)條件的集合S共有幾個(gè),為什么,能否列出來(lái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知:△ABC中,∠ACB=90°,D、E分別為AC、AB的中點(diǎn),沿DE將△ADE折起,使A到A′的位置,M是A′B的中點(diǎn),求證:ME∥平面A′CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,$\frac{π}{6}$<θ<$\frac{π}{2}$,則sinθ=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某臺(tái)機(jī)床加工的1000只產(chǎn)品中次品數(shù)的頻率分布如表:
次品數(shù)01234
頻率0.50.20.050.20.05
則次品平數(shù)的眾數(shù),平均數(shù)依次為(  )
A.0,1.1B.0,1C.4,1D.0.5,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=1nx,g(x)=ex.求函數(shù)F(x)=f(x)-g(x-1)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將邊長(zhǎng)為2正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)判斷:
①AC⊥BD
②AB與平面BCD所成60°角      
③△ABC是等邊三角形
④若A、B、C、D四點(diǎn)在同一個(gè)球面上,則該球的表面積為8π
其中正確判斷的序號(hào)是①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案