6.已知a=tan224°,b=sin136°,c=cos310°,則( 。
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

分析 首先化為0°~90°的三角函數(shù),然后利用三角函數(shù)線比較大。

解答 解:tan224°=tan44°,sin136°=sin44°,cos310°=cos50°=sin40°,
如圖∠COF=44°,CF是44°的正切線,EG是正弦線,OE是余弦線,DI是40°的正弦線,
由圖可知CF>EG>DI,
所以cos310°<sin136°<tan224°;
故選:C.

點評 本題考查了利用三角函數(shù)線半徑三角函數(shù)值的大小;關(guān)鍵是正確畫圖,找出對應(yīng)的三角函數(shù)線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(3,m)$,若$(2\overrightarrow a-\overrightarrow b)$與$\overrightarrow b$平行,則m的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,已知∠A=135°,∠B=30°,那么a:b的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個圓錐過軸的截面為等邊三角形,它的頂點和底面圓周在球O的球面上,則該圓錐的體積與球O的體積的比值為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)y=f(x),當(dāng)x=2時函數(shù)取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在區(qū)間(1,4)上不單調(diào),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD中,四邊形ABCD為平行四邊形,E,F(xiàn)分別為所在邊中點,證明:EF∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在(-∞,+∞)上的函數(shù)f(x)是偶函數(shù),并且f(x)在[0,+∞)上是增函數(shù).若f(1)<f(lgx),那么x的取值范圍是(0,$\frac{1}{10}$)∪(10,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的首項a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N*),
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)令bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx,g(x)=-$\frac{1}{x}$.
(1)判斷曲線y=f(x)與曲線y=g(x)(x<0)的公共切線(與兩曲線均相切)的條數(shù).
(2)若函數(shù)F(x)=af(x)-g(x)在區(qū)間[$\frac{1}{{e}^{2}},e$]上有且只有兩個零點,求實數(shù)a的取值范圍,e≈2.718.

查看答案和解析>>

同步練習(xí)冊答案