10.化簡:C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=22n-1-1.

分析 利用(1+1)2n展開式中的二項式系數(shù)的性質(zhì),可得:${∁}_{2n}^{0}$+C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=$\frac{1}{2}×{2}^{2n}$,即可得出.

解答 解:(1+1)2n展開式中的二項式系數(shù)的性質(zhì)為:${∁}_{2n}^{0}$+C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=$\frac{1}{2}×{2}^{2n}$=22n-1,
∴C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=22n-1-1.
故答案為:22n-1-1.

點評 本題考查了二項式定理展開式中的二項式系數(shù)的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知A,B是圓C:x2+y2=1上兩點,且$\overrightarrow{OA}•\overrightarrow{OB}$=-1,點P是直線x-y-2=0上一點,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知角α的終邊上的一點P(-$\sqrt{3}$,$\sqrt{5}$),則cosα的值為( 。
A.-$\frac{\sqrt{15}}{3}$B.-$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.若一條直線同時和兩個曲線相切我們稱此直線為兩曲線的公切線,已知f(x)=x2,g(x)=-x2+2x+a
(1)若f(x)與g(x)只有一條公切線,求實數(shù)a值;
(2)若f(x)與g(x)有兩條公切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.化簡sin2αsin2β+cos2αcos2β-$\frac{1}{2}$cos2αcos2β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,在(0,$\frac{π}{2}$)內(nèi)單調(diào)遞增,且以π為最小正周期的偶函數(shù)是( 。
A.y=tan|x|B.y=|tanx|C.y=cot|x|D.y=|cotx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.給出如下定義:對函數(shù)y=f(x),x∈D.若存在實常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,則稱函數(shù)y=f(x)為“和諧函數(shù)”,常數(shù)C為函數(shù)y=f(x)的“和諧數(shù)”,若函數(shù)g(x)=lnx,x∈[e2,e3]為“和諧函數(shù)”,則其可能的“和諧數(shù)”為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.為了了解某地區(qū)的1003名學生的數(shù)學,打算從中抽取一個容量為50的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需要從總體中剔除3個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為( 。
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,則z=x-3y的最大值為2.

查看答案和解析>>

同步練習冊答案