【題目】從星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案種數(shù)為 .

【答案】42

【解析】

分兩類:第一類,甲排在星期六, 第二類,甲不排在星期六,分別求出不同的排法種數(shù),然后求和即可.

因為甲不安排在星期一,乙不安排在星期六,所以先排甲乙,而甲若排在星期六,則乙就沒有限制,所以可按甲的排法分類,分為兩類,一類是甲排在星期六,其他人沒有限制,有C41C42=24種排法,一類是甲不排在星期六,則甲從星期二到星期五之間選一天,有C42種選法,再排乙,不能安排在星期六,所以從剩下的3天中選2天,有C32種選法,最后排丙,有C42 C32=18,值班方案種數(shù)為24+18=42種.

故答案為42

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實數(shù)b,使得關于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從高三男生中隨機抽取n名學生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對學生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學生進行不同項目的體能測試,若在這7名學生中隨機抽取2名學生進行引體向上測試,求第4組中至少有一名學生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)只有一個極值點,則k的取值范圍為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 圓 的內(nèi)切圓.其中.

(1)求圓的方程及 點坐標;

(2)在直線 上是否存在異于的定點使得對圓上任意一點,都有為常數(shù) )?若存在,求出點 的坐標及的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一顆骰子連擲三次,投擲出的數(shù)字順次排成一個三位數(shù),此時:

1)各位數(shù)字互不相同的三位數(shù)有多少個?

2)可以排出多少個不同的數(shù)?

3)恰好有兩個相同數(shù)字的三位數(shù)共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“垛積術”(隙積術)是由北宋科學家沈括在《夢溪筆談》中首創(chuàng),南宋科學家楊輝、元代數(shù)學家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、三角垛等等,某倉庫中部分貨物堆放成“菱草垛”,自上而下,第一層1件,以后每一層比上一層多1件,最后一層是件,已知第一層貨物單價1萬元,從第二層起,貨物的單價是上一層單價的,若這堆貨物總價是萬元,則的值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設計成半徑為的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形為中心在圓心的矩形,現(xiàn)計劃將矩形區(qū)域設計為可推拉的窗口.

1)若窗口為正方形,且面積大于(木條寬度忽略不計),求四根木條總長的取值范圍;

2)若四根木條總長為,求窗口面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的頂點為,左、右焦點分別為、,過點A且斜率為的直線與y軸交于點P,與橢圓交于另一個點B,且點Bx軸上的射影恰好為點.

1)求橢圓C的標準方程;

2M為橢圓C上一動點,是橢圓C長軸上的一個點,直線MQ與橢圓C的另一個交點為N,令,若t值與點M的位置無關,則稱此時的點Q穩(wěn)定點,試求出所有穩(wěn)定點,若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案