4.求下列兩個集合的并集和交集
(1)A={a,b,c},B={a,c,e,f};
(2)A={x|x>-2},B={x|x≤3};
(3)A={y|y=x2-2x},B={x|y=-x2}.

分析 根據(jù)集合A和集合B之間的關系,然后根據(jù)交集,并集的定義進行求解.

解答 解:(1)A={a,b,c},B={a,c,e,f},∴A∩B={a,c},A∪B={a,b,c,e,f};
(2)A={x|x>-2},B={x|x≤3},∴A∩B={x|-2<x≤3},A∪B=R;
(3)A={y|y=x2-2x}=[-1,+∞),B={x|y=-x2}=R,∴A∩B=[-1,+∞),A∪B=R.

點評 本題考查集合的性質(zhì)和應用,解題時要注意定義的合理運用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.己知函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期為π,x=-$\frac{π}{24}$為它的圖象的一條對稱軸.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC,a,b,c分別為角A,B,C的對應邊,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-b(a>0且a≠1).
(1)若f(x)的圖象過點(2,2)和(4,14),求f(a-b);
(2)若f(x)的圖象經(jīng)過第二、三、四象限,求ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),不等式f(x-3)+f(x2-3)<0的解集為A,集合B=A∩{x|1≤x≤$\sqrt{5}$},求函數(shù)g(x)=5x2-21x+1,x∈B的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R),若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)當x∈[-2,2]時,求g(x)=f(x)-kx最小值h(k);
(3)當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=$\frac{2}{\sqrt{k{x}^{2}+4kx+3}}$.
(1)若f(x)定義域為R,求實數(shù)k的取值范圍;
(2)若f(x)定義域為(-6,2),求實數(shù)k的值;
(3)若f(x)值域為(0,+∞),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.己知f(x)是定義在R上的奇函數(shù),當x>0時f(x)=x2-4x+3,則不等式f(x)≥0的解集用區(qū)間表示為[-3,-1]∪[0,1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB=$\frac{3}{2}$,且a、b、c成等比數(shù)列.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{tanA}$+$\frac{c}{tanC}$=$\frac{2b}{tanB}$,a=2,判斷三角形形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.寫出與下列各角終邊相同的角的集合S,并把S中在-360°~720°間的角寫出來.
(1)70°;    (2)-53°;   (3)480°16′.

查看答案和解析>>

同步練習冊答案