18.過球的一條半徑的中點(diǎn),作垂直于該半徑的平面,則所得截面的面積是球的表面積的( 。
A.$\frac{3}{16}$B.$\frac{9}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 根據(jù)截面面的性質(zhì)求出對應(yīng)的半徑進(jìn)行求解即可.

解答 解:如圖所示的過球心的截面圖,
$r=\sqrt{{R^2}-\frac{1}{4}{R^2}}=\frac{{\sqrt{3}}}{2}R,\frac{S_圓}{S_球}=\frac{{π{{(\frac{{\sqrt{3}}}{2}R)}^2}}}{{4π{R^2}}}=\frac{3}{16}$,

故選:A.

點(diǎn)評 本題主要考查求的表面積的計(jì)算,根據(jù)截面圓的性質(zhì),求出球的半徑是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知不等式x2-2x-3<0的整數(shù)解構(gòu)成等差數(shù)列{an}的前三項(xiàng),則數(shù)列的第四項(xiàng)為( 。
A.3B.-1C.2D.3或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若sin(α+β)=$\frac{4}{5}$,sin(α-β)=-$\frac{12}{13}$,
(1)求$\frac{tanα}{tanβ}$的值;
(2)若$\frac{π}{2}$<α+β<π,-$\frac{π}{2}$<α-β<$\frac{π}{2}$,求cos2α,sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=3x-2,x∈R.規(guī)定:給定一個實(shí)數(shù)x0,賦值x1=f(x0),若x1≤244,則繼續(xù)賦值x2=f(x1),…,以此類推,若xn-1≤244,則xn=f(xn-1),否則停止賦值,如果得到xn稱為賦值了n次(n∈N*).已知賦值8次后該過程停止,則x0的取值范圍是$\frac{28}{27}<{x_0}≤\frac{10}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,四邊形ABCD是菱形,O是AC與BD的交點(diǎn),SA⊥平面ABCD.
(Ⅰ)求證:平面SAC⊥平面SBD;
(Ⅱ)若∠DAB=120°,DS⊥BS,AB=2,求二面角S-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.著名數(shù)學(xué)家華羅庚曾說過:“數(shù)形結(jié)合百般好,隔裂分家萬事休.”事實(shí)上,有很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:$\sqrt{{{(x-a)}^2}+{{(y-b)}^2}}$可以轉(zhuǎn)化為平面上點(diǎn)M(x,y)與點(diǎn)N(a,b)的距離.結(jié)合上述觀點(diǎn),可得f(x)=$\sqrt{{x^2}+4x+20}$+$\sqrt{{x^2}+2x+10}$的最小值為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=lg(\sqrt{1+4{x^2}}+2x)+1$,則$f(lg3)+f(lg\frac{1}{3})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且BC邊上的高為$\frac{a}{2}$,則$\frac{c}+\frac{c}$的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,定義域?yàn)镽的是( 。
A.y=$-\frac{{\sqrt{5}}}{e^x}$B.y=$\sqrt{x+1}$C.y=lnxD.y=x-1

查看答案和解析>>

同步練習(xí)冊答案