17.已知函數(shù)y=loga(x+b)(a,b為常數(shù))的圖象如圖所示,則函數(shù)g(x)=b${\;}^{{x}^{2}-2x}$,x∈[0,3]的最大值是( 。
A.1B.bC.b2D.$\frac{1}$

分析 根據(jù)已知中函數(shù)的圖象,可得b∈(0,1),結(jié)合二次函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)的圖象和性質(zhì),及復(fù)合函數(shù)的單調(diào)性,可得答案.

解答 解:∵函數(shù)y=loga(x+b)(a,b為常數(shù))的零點(diǎn)位于(0,1)上,
故b∈(0,1),
當(dāng)x∈[0,3]時(shí),x2-2x在x=1時(shí)取最小值-1,
此時(shí)g(x)=b${\;}^{{x}^{2}-2x}$取最大值$\frac{1}$,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)的圖象和性質(zhì),對(duì)數(shù)函數(shù)的圖象和性質(zhì),及復(fù)合函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=4與拋物線和y軸分別交于點(diǎn)P、Q,且|PF|=2|PQ|
(1)求拋物線的方程;
(2)過點(diǎn)F作互相垂直的兩直線分別交拋物線于點(diǎn)A、B、C、D,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.幾何體三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{32}{3}$B.$16-\frac{2π}{3}$C.$\frac{40}{3}$D.$16-\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若實(shí)數(shù)x,y滿足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,則max{|3x-y|,x+2y}的取值范圍是( 。
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=aex-1+|x-a|-1有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.[0,1]C.{-1}∪(0,1]D.{-1}∪[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)P是圓O外的一點(diǎn),過P作圓O的切線PA,PB,切點(diǎn)為A,B,過P作一割線交圓O于點(diǎn)E,F(xiàn),若2PA=PF,取PF的中點(diǎn)D,連接AD,并延長交圓于H.
(1)求證:O,A,P,B四點(diǎn)共圓;
(2)求證:PB2=2AD•DH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給出最小二乘法下的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$系數(shù)公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元),有如表的統(tǒng)計(jì)資料:
使用年限x (年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知以點(diǎn)C(t,$\frac{3}{t}}$)(t∈R,t≠0)為圓心的圓過原點(diǎn)O.
(Ⅰ) 設(shè)直線3x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(Ⅱ) 在(Ⅰ)的條件下,設(shè)B(0,2),且P、Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PQ|-|PB|的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案