9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為$\frac{32}{3}$.

分析 由三視圖知該幾何體是如圖所示的三棱錐A-BCD,利用體積計(jì)算公式即可得出.

解答 解:由三視圖知該幾何體是如圖所示的三棱錐A-BCD,
所以三棱錐A-BCD的體積V=$\frac{1}{3}×\frac{1}{2}×{4}^{2}×4$=$\frac{32}{3}$.
故答案為:$\frac{32}{3}$.

點(diǎn)評 本題考查了三視圖的有關(guān)計(jì)算、三棱錐的體積計(jì)算公式、正方體的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.作出函數(shù)y═-$\frac{1}{x+1}$的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),則曲線C是(  )
A.關(guān)于x軸對稱的圖形B.關(guān)于y軸對稱的圖形
C.關(guān)于原點(diǎn)對稱的圖形D.關(guān)于直線y=x對稱的圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=loga(x+b)(a,b為常數(shù))的圖象如圖所示,則函數(shù)g(x)=b${\;}^{{x}^{2}-2x}$,x∈[0,3]的最大值是( 。
A.1B.bC.b2D.$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象關(guān)于(1,0)對稱,當(dāng)x>1時(shí),f(x)=loga(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,則(  )
A.f(x1)+f(x2)<0B.f(x1)+f(x2)>0C.f(x1)+f(x2)可能為0D.f(x1)+f(x2)可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐S-ABCD,SB⊥AD,側(cè)面SAD是邊長為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.
(1)求點(diǎn)S到平面ABCD的距離;
(2)若E為SC的中點(diǎn),求二面角A-DE-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x2+ax-$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù),則a的取值范圍( 。
A.(-∞,3]B.(-∞,-3]C.[-3,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1的各棱長為2,側(cè)面BCC1B1⊥底面ABC,∠B${\;}_{{1}_{\;}}$BC=60°,P為A1C1的中點(diǎn).
(1)求證:BC⊥AB1
(2)求二面角C1-B1C-P的余弦值.

查看答案和解析>>

同步練習(xí)冊答案