20.對(duì)于同一平面內(nèi)的單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)的最大值為(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

分析 設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosα,-sinα),則($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)=$\frac{1}{2}$-cosα+$\sqrt{3}$sinα=$\frac{1}{2}$+2sin(α-30°),根據(jù)三角函數(shù)的性質(zhì)可求,.

解答 解:∵同一平面內(nèi)的單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,
設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosα,-sinα),
∴$\overrightarrow{a}$-$\overrightarrow$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{a}$-2$\overrightarrow{c}$=(1-2cosα,-2sinα),
∴($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)=$\frac{1}{2}$-cosα+$\sqrt{3}$sinα=$\frac{1}{2}$+2sin(α-30°),
∵-1≤sin(α-30°)≤1,
∴-$\frac{3}{2}$≤$\frac{1}{2}$+2sin(α-30°)≤$\frac{5}{2}$,
∴($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)的最大值為$\frac{5}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.圖2中的實(shí)線圍成的部分是長(zhǎng)方體(圖1)的平面展開(kāi)圖,其中四邊形ABCD是邊長(zhǎng)為1的正方形,若向虛線圍成的矩形內(nèi)任意拋擲一質(zhì)點(diǎn),它落在長(zhǎng)方體的平面展開(kāi)圖內(nèi)的概率是$\frac{1}{4}$.
(1)從正方體ABCD的四條邊及兩條對(duì)角線共6條線段中任取2條線段(每條線段被取到的可能性相等),則其中一條線段長(zhǎng)度是另一條線段長(zhǎng)度的$\sqrt{2}$倍的概率是$\frac{8}{15}$.
(2)此長(zhǎng)方體的體積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.甲、乙兩人射擊同一目標(biāo),甲、乙擊中目標(biāo)的概率分別為0.6,0.3,兩人各射擊一次,都擊中目標(biāo)的概率是0.18目標(biāo)被擊中的概率為0.72恰有一人擊中的概率為0.54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,直線l1:y=kx(k≠0)與橢圓相交于點(diǎn)A,B,過(guò)點(diǎn)B且斜率為$\frac{1}{4}$k的直線l2與橢圓C的另一個(gè)交點(diǎn)為D,AD⊥AB.
(1)求橢圓C的方程;
(2)設(shè)直線l2與x軸,y軸分別相交于點(diǎn)M,N,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=2x+log2x+b在區(qū)間($\frac{1}{2}$,4)上有零點(diǎn),則實(shí)數(shù)b的取值范圍是(  )
A.(-10,0)B.(-8,1)C.(0,10)D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示的幾何體中,ABC-A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=$\sqrt{2}$CD,∠ADC=45°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-A1C1-D的平面角的余弦值為$\frac{2\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=x2+x-2alnx在[1,e]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{3}{2}$]B.(-∞,1]C.(-1,$\frac{3}{2}$]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,在平行四邊形OABC中,點(diǎn)A(1,-2),C(3,1),則向量$\overrightarrow{OB}$的坐標(biāo)是( 。
A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦點(diǎn)為F1,F(xiàn)2,P是雙曲線上一點(diǎn),若△F1F2P是等腰直角三角形,則雙曲線的離心率e等于( 。
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{2}$-1D.2$\sqrt{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案