2.若不等式ax2+5x-2>0的解集是{x|$\frac{1}{2}$<x<2},則a的值為( 。
A.-$\frac{3}{2}$B.2C.-2D.$\frac{1}{2}$

分析 根據(jù)一元二次不等式與一元二次方程之間的關(guān)系可得$\frac{1}{2}$,2為方程ax2+5x-2=0的兩根然后根據(jù)韋達(dá)定理求出a的值.

解答 解:∵不等式ax2+5x-2>0的解集為{x|$\frac{1}{2}$<x<2},
∴$\frac{1}{2}$,2為方程ax2+5x-2=0的兩根,
∴根據(jù)韋達(dá)定理可得
∴$\frac{1}{2}$×2=-$\frac{2}{a}$
∴a=-2
故選:C.

點(diǎn)評(píng) 本題主要考察一元二次不等式與一元二次方程之間的關(guān)系.解題的關(guān)鍵是一元二次不等式與一元二次方程之間的關(guān)系的轉(zhuǎn)化與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖.在四邊形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,O在線段AC上,且AO:OC=2:1,試判斷B,O,D三點(diǎn)是否在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\sqrt{{7}^{x}-3}$的定義域是[log73,+∞).(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若關(guān)于x的不等式xlnx+x-kx+3k>0對(duì)任意x>1恒成立,則整數(shù)k等于0,1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\frac{1}{x}$+x+alnx(a<0)單調(diào)增區(qū)間是($\frac{-a\sqrt{{a}^{2}+4}}{2},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)a=20.3,b=log20.3,c=0.32,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$\overrightarrow{a}$=(2,-3,1),$\overline$=(2,0,3),$\overrightarrow{c}$=(0,1,-2),則$\overrightarrow{a}$+4$\overrightarrow$-3$\overrightarrow{c}$等于(  )
A.(4,-4,6)B.(-6,-6,-5)C.(10,0,7)D.(10,-6,19)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體的外接球的表面積為32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知四棱錐P-ABCD的底面是菱形,∠BCD=60°,AB=PB=PD=2,PC=$\sqrt{3}$,AC與BD交于O點(diǎn),E,H分別為PA,OC的中點(diǎn).
(1)求證:PH⊥平面ABCD;
(2)求直線CE與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案