16.在銳角△ABC中,下列結(jié)論一定成立的是( 。
A.logcosC$\frac{sinA}{cosB}$>0B.logsinC$\frac{sinA}{sinB}$>0
C.logcosC$\frac{cosA}{cosB}$>0D.logcosC$\frac{cosA}{sinB}$>0

分析 由△ABC為銳角三角形,可得0<cosC<1,且A+B>$\frac{π}{2}$,由此可得$0<\frac{cosA}{sinB}<1$.然后利用對數(shù)函數(shù)的性質(zhì)可得logcosC$\frac{cosA}{sinB}$>0.

解答 解:銳角△ABC中,C為銳角,
∴A+B>$\frac{π}{2}$,∴$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
則0<cosA<cos($\frac{π}{2}-B$)=sinB,
∴$0<\frac{cosA}{sinB}<1$.
又0<cosC<1,
∴$lo{g}_{cosC}\frac{cosA}{sinB}>0$.
故選:D.

點評 本題考查對數(shù)的運算性質(zhì),考查了余弦函數(shù)的單調(diào)性,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知梯形ABCD中,AD∥BC,則$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$=$\overrightarrow{OD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某平面區(qū)域為坐標(biāo)平面上由點A(0,30),B(18,27),C(20,0),D(2,3)所圍成的平行四邊形及其內(nèi)部.已知目標(biāo)函數(shù)z=ax+by(a,b∈R)在D點有最小值48,則此目標(biāo)函數(shù)的最大值為432.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.用0,1,2,3,4,5六個數(shù)字排成沒有重復(fù)數(shù)字的6位數(shù),分別滿足下列條件的數(shù)有多少個?
(1)0不在個位;
(2)1與2相鄰;
(3)1與2不相鄰;
(4)0與1之間恰有兩個數(shù);
(5)1不在個位;
(6)偶數(shù)數(shù)字從左向右從小到大排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若角α是△ABC的內(nèi)角,且sinα+cosα=$\frac{2}{3}$,試判斷這個三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知A(1,m),B(3,-1),$\overrightarrow{AC}$=(-3,4).
(1)若m=2時,求2$\overrightarrow{AB}$+$\overrightarrow{AC}$的模;
(2)求cos∠BAC;
(3)△ABC為銳角三角形,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,邊長相等的兩個正方形ABCD和ABEF所在平面相交于AB,M∈BD,N∈AE且BM=EN≠BD.求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列集合中與集合{x|x=2k+1,k∈N+}不相等的是( 。
A.{x|x=2k-1,k∈N+}B.{x|x=4k±1,k∈N+}
C.{x|x=2k-1,k∈N且k>1}D.{x|x=2k+3,k∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(理)已知數(shù)列{an}、{bn}的通項公式分布為an=(-1)n-1a-1,bn=(-1)n$\frac{1-2n}{2n+1}$,切對于一切的正整數(shù)n,恒有an<bn成立,則實數(shù)a的取值范圍是$[0,\frac{4}{3})$.

查看答案和解析>>

同步練習(xí)冊答案