8.某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品需用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品需用4個(gè)B配件耗時(shí)2h,該廠每天最多可從配件廠獲得24個(gè)A配件和16個(gè)B配件,每天生產(chǎn)總耗時(shí)不超過(guò)8h.若生產(chǎn)一件甲產(chǎn)品獲利3萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利4萬(wàn)元,則通過(guò)恰當(dāng)?shù)纳a(chǎn)安排,該工廠每天可獲得的最大利潤(rùn)為( 。
A.24萬(wàn)元B.22萬(wàn)元C.18萬(wàn)元D.16萬(wàn)元

分析 根據(jù)條件建立不等式組即線性目標(biāo)函數(shù),利用圖象可求該廠的日利潤(rùn)最大值.

解答 解:設(shè)甲、乙兩種產(chǎn)品分別生產(chǎn)x、y件,工廠獲得的利潤(rùn)為z又已知條件可得二元一次不等式組:
$\left\{\begin{array}{l}{x+2y≤8}\\{4x≤24}\\{4y≤16}\\{x≥0}\\{y≥0}\end{array}\right.$

目標(biāo)函數(shù)為z=3x+4y,
由 $\left\{\begin{array}{l}{x=6}\\{x+2y=8}\end{array}\right.$,可得 $\left\{\begin{array}{l}{x=6}\\{y=1}\end{array}\right.$,
利用線性規(guī)劃可得x=6,y=1時(shí),此時(shí)該廠的日利潤(rùn)最大為z=3×6+4=22萬(wàn)元,
故選:B.

點(diǎn)評(píng) 本題考查線性規(guī)劃知識(shí),考查利潤(rùn)最大,解題的關(guān)鍵是確定線性約束條件及線性目標(biāo)函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且三角形的面積為S=$\frac{{\sqrt{3}}}{2}$accosB.
(Ⅰ)求角B的大小;
(Ⅱ)若c=8,點(diǎn)D在BC上,且CD=2,cos∠ADB=-$\frac{1}{7}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若集合A={x|y=$\sqrt{x-1}$,x∈R},B={x||x|≤1,x∈R},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.將函數(shù)f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ$<\frac{π}{2}$)的圖象向右平移φ(0<φ<π)個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若f(x),g(x)的圖象都經(jīng)過(guò)點(diǎn)P(0,$\frac{\sqrt{3}}{2}$),則φ的值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.AC是圓的直徑,B、D在圓上且AB=$\sqrt{3}$,AD=$\sqrt{5}$,則$\overrightarrow{AC}$$•\overrightarrow{BD}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若a∈(0,1),則下列不等式中正確的一個(gè)是( 。
A.a0.8>a0.7B.0.7a>0.6aC.loga0.7<loga0.8D.0.8lga>0.7lga

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),則a-c≤|PF1|≤a+c,a-c≤|PF2|≤a+c,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=f(x)的圖象如圖,自變量x從x1變到x2,對(duì)應(yīng)的函數(shù)y從f(x1)變到f(x2),設(shè)△x=x2-x1,確定各圖的中△x,△y,$\frac{△y}{△x}$的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,一豎立在水平對(duì)面上的圓錐形物體的母線長(zhǎng)為4m,一只小蟲從圓錐的底面圓上的點(diǎn)P出發(fā),繞圓錐表面爬行一周后回到點(diǎn)P處,則該小蟲爬行的最短路程為$4\sqrt{3}m$,則圓錐底面圓的半徑等于( 。
A.1mB.$\frac{3}{2}m$C.$\frac{4}{3}m$D.2m

查看答案和解析>>

同步練習(xí)冊(cè)答案