如圖所示,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC,
AE= AB,BD,CE相交于點(diǎn)F.
(1)求證:A,E,F,D四點(diǎn)共圓;
(2)若正△ABC的邊長(zhǎng)為2,求A,E,F,D所在圓的半徑.
(1)證明:∵AE=AB,∴BE=AB.
又∵AD=AC,AB=AC,∴AD=BE.
又∵AB=BC,∠BAD=∠CBE,
∴△BAD≌△CBE,∴∠ADB=∠BEC,
∴∠ADF+∠AEF=π,
∴A,E,F,D四點(diǎn)共圓.
(2)解:如圖所示,取AE的中點(diǎn)G,連接GD,則AG=GE=AE.
∵AE=AB,∴AG=GE=AB=.
∵AD=AC=,∠DAE=60°,
∴△AGD為正三角形,
∴GD=AG=AD=,即GA=GE=GD=,
所以點(diǎn)G是△AED外接圓的圓心,且圓G的半徑為.
由于A,E,F,D四點(diǎn)共圓,即A,E,F,D四點(diǎn)共圓G,其半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知過(guò)拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A、B兩點(diǎn),|AF|=2,則|BF|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a,b為正實(shí)數(shù).現(xiàn)有下列命題:
①若a2-b2=1,則a-b<1;②若-=1,則a-b<1;
③若|-|=1,則|a-b|<1;④若|a3-b3|=1,則|a-b|<1.
其中的真命題有 .(寫(xiě)出所有真命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,AB是半徑等于3的☉O的直徑,CD是☉O的弦,BA,DC的延長(zhǎng)線交于點(diǎn)P,若PA=4,PC=5,則∠CBD= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.
(1)證明:B,D,H,E四點(diǎn)共圓;
(2)證明:CE平分∠DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,那么( )
(A)△A1B1C1和△A2B2C2都是銳角三角形
(B)△A1B1C1和△A2B2C2都是鈍角三角形
(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
(D)△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(θ)=sin θ+cos θ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com