19.(1)求$y=sin(2x-\frac{π}{6})+2,x∈[{-\frac{π}{2},\frac{π}{3}}]$的值域.
(2)求函數(shù)y=sin2x-acosx+3,x∈[0,π]的最大值和最小值.

分析 (1)直接由x的范圍求得相位的范圍,則函數(shù)的值域可求;
(2)化正弦為余弦,然后換元,配方后對(duì)a分類討論求得函數(shù)的最值.

解答 解:(1)當(dāng)x∈[$-\frac{π}{2}$,$\frac{π}{3}$]時(shí),2x$-\frac{π}{6}$∈[$-\frac{7π}{6}$,$\frac{π}{2}$],
∴sin(2x$-\frac{π}{6}$)∈[-1,1],
∴$y=sin(2x-\frac{π}{6})+2,x∈[{-\frac{π}{2},\frac{π}{3}}]$的值域∈[1,3];
(2)當(dāng)x∈[0,π]時(shí),設(shè)t=cosx∈[-1,1],
∴函數(shù)y=sin2x-acosx+3=(1-cos2x)-acosx+3
=-cos2x-acosx+4=-(cosx+$\frac{a}{2}$)2+4+$\frac{{a}^{2}}{4}$=$-(t+\frac{a}{2})^{2}+4+\frac{{a}^{2}}{4}$,
由二次函數(shù)可知:
當(dāng)$-\frac{a}{2}≤-1$,即a≥2時(shí),函數(shù)取最大值3+a,最小值為3-a;
當(dāng)-1$<-\frac{a}{2}≤0$,即0≤a<2時(shí),函數(shù)取最大值$4+\frac{{a}^{2}}{4}$,取最小值3-a;
當(dāng)0<$-\frac{a}{2}<1$,即-2<a<0時(shí),函數(shù)取得最大值$4+\frac{{a}^{2}}{4}$,最小值為3+a;
當(dāng)$-\frac{a}{2}≥1$,即a≤-2時(shí),函數(shù)取得最大值3-a,最小值為3+a.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,考查換元法和分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,y),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$,則使得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立的x的取值范圍是(  )
A.[-$\frac{3}{5}$,+∞)B.(-∞,$\frac{3}{5}$]C.(-$\frac{3}{5}$,+∞)D.$({-\frac{3}{5},\frac{3}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,設(shè)F是橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的下焦點(diǎn),直線y=kx-4(k>0)與橢圓相交于A、B兩點(diǎn),與y軸交于點(diǎn)P
(1)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求k的值;
(2)求證:∠AFP=∠BF0;
(3)求面積△ABF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{a(x-1)}{x+1}$-lnx在[1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.a<1B.a<2C.a≤2D.a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,圓x2+y2=4上的一點(diǎn)P(x0,y0)(x0,y0>0)處的切線l分別交x軸,y軸于點(diǎn)A,B,以A,B為頂點(diǎn)且以O(shè)為中心的橢圓記作C,直線OP交C于M,N兩點(diǎn).
(1)若橢圓C的離心率為$\frac{{\sqrt{6}}}{3}$,求P點(diǎn)的坐標(biāo)
(2)證明四邊形AMBN的面積S>8$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z=m2-1+(m2-3m+2)i
(1)是實(shí)數(shù);
(2)是純虛數(shù);
(3)復(fù)數(shù)z在復(fù)平面內(nèi)表示的點(diǎn)在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}的前15項(xiàng)之和為$\frac{15π}{4}$,則tan(a7+a8+a9)=( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.P為雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線位于第一象限上的一點(diǎn),若點(diǎn)P到該雙曲線左焦點(diǎn)的距離為2$\sqrt{3}$,則點(diǎn)P到其右焦點(diǎn)的距離為(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案