5.設(shè)a,b∈R,定義運(yùn)算:a*b=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若x>0,y>0,則($\frac{1}{x}$+$\frac{4}{y}$)*(x+y)的最小值是( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$\sqrt{3}$D.3

分析 利用新定義及其基本不等式的性質(zhì)即可得出.

解答 解:x>0,y>0,則($\frac{1}{x}$+$\frac{4}{y}$)*(x+y)=$\left\{\begin{array}{l}{\frac{1}{x}+\frac{4}{y},\frac{1}{x}+\frac{4}{y}≥x+y}\\{x+y,\frac{1}{x}+\frac{4}{y}<x+y}\end{array}\right.$.
∵(x+y)$(\frac{1}{x}+\frac{4}{y})$=5+$\frac{y}{x}+\frac{4x}{y}$≥5+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$=9,當(dāng)且僅當(dāng)y=2x>0時(shí)取等號.
∴($\frac{1}{x}$+$\frac{4}{y}$)*(x+y)的最小值是3.
故選:D.

點(diǎn)評 本題考查了新定義、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若x,y滿足約束條件$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,則z=y-x的最大值為(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,B=30°,C=45°,c=1,則b=( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓O:x2+y2=4,點(diǎn)M(1,0)圓內(nèi)定點(diǎn),過M作兩條互相垂直的直線與圓O交于AB、CD,則弦長AC的取值范圍[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列函數(shù):
①f(x)=xsinx;
②f(x)=ex+x;
③f(x)=ln($\sqrt{1+{x}^{2}}$-x);
?a>0,使${∫}_{-a}^{a}$f(x)dx=0的函數(shù)是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.要建一間地面為25m2,墻高為3m的長方體形的簡易工棚.已知工棚屋頂每1m2的造價(jià)為500元,墻壁每1m2的造價(jià)為400元.問怎樣設(shè)計(jì)地面的長與寬,能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}滿足an+1+2an=0,a2=-6,則{an}的前10項(xiàng)和等于-1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.定義:若點(diǎn)M(x0,y0)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,則點(diǎn)N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)為點(diǎn)M的一個(gè)“依附點(diǎn)”.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長半軸長和焦距均為2,若橢圓C的弦AB的端點(diǎn)A,B的“依附點(diǎn)”分別是P,Q,且OP⊥OQ.
(I)求橢圓C的方程;
(Ⅱ)求證:S△OAB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱BC,CC1,C1D1,AA1的中點(diǎn),O為AC與BD的交點(diǎn).求證:
(1)A1O⊥平面BDF;
(2)平面BDF⊥平面AA1C.

查看答案和解析>>

同步練習(xí)冊答案