分析 (1)直線ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$展開:$ρ(\frac{1}{2}sinθ-\frac{\sqrt{3}}{2}cosθ)$=-$\frac{\sqrt{3}}{2}$,利用互化公式可得直角坐標(biāo)方程,再令y=0,可得x.
(2)點(diǎn)($\sqrt{2}$,$\frac{π}{4}$),化為(1,1),可得r,圓的標(biāo)準(zhǔn)方程,利用互化即可得出.
解答 解:(1)直線ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$展開:$ρ(\frac{1}{2}sinθ-\frac{\sqrt{3}}{2}cosθ)$=-$\frac{\sqrt{3}}{2}$,可得直角坐標(biāo)方程:y-$\sqrt{3}$x+$\sqrt{3}$=0,令y=0,可得x=1,∴圓C的圓心坐標(biāo)(1,0).
(2)點(diǎn)($\sqrt{2}$,$\frac{π}{4}$),化為(1,1),∴r=1,∴圓的方程為:(x-1)2+y2=1,展開化為:x2+y2-2x=0,可得極坐標(biāo)方程:ρ2-2ρcosθ=0,∴ρ=2cosθ.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}和1$ | B. | $\sqrt{3}和\frac{3}{2}$ | C. | $\sqrt{2}和\frac{3}{2}$ | D. | 2和1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{10}}{10}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com