如果雙曲線
-
=1(a>0,b>0)的一條漸近線與直線
x-y+
=0平行,則雙曲線的離心率為( 。
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:漸近線與直線3
x-y+
=0平行,得a、b關(guān)系,再由雙曲線基本量的平方關(guān)系,得出a、c的關(guān)系式,結(jié)合離心率的定義,可得該雙曲線的離心率.
解答:
解:∵雙曲線
-
=1(a>0,b>0)的一條漸近線與直線
x-y+
=0平行
∴雙曲線的漸近線方程為y=±
x
∴
=
,得b
2=3a
2,c
2-a
2=3a
2,
此時,離心率e=
=2.
故選:C.
點(diǎn)評:本題給出雙曲線的漸近線方程,求雙曲線的離心率,考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x2,g(x)=-x2+bx-10,且直線y=4x-6是曲線y=g(x)的一條切線.
(1)求b的值;
(2)求與曲線y=f(x)和y=g(x)都相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}中,點(diǎn)(an,an+1)(n∈N*)在直線x-y+1=0上,且a2=2.
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列,并求an;
(Ⅱ)設(shè)bn=2 an,數(shù)列{bn}的前n項和為Sn,若對?n∈N*,Sn≥λ•2n成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖程序框圖中,若輸入m=4,n=10,則輸出a,i的值分別是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知雙曲線
-=1(a>0,b>0)的一條漸近線與直線x+3y+1=0垂直,則雙曲線的離心率等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
下列命題中的假命題是( 。
A、?x∈R,lgx=0 |
B、?x∈R,tanx=2 |
C、?x∈R,x2≥0 |
D、?x∈R,2 x2+2x>1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖的正方形ABCD邊長為1,P,Q為線段BC,CD上的動點(diǎn),設(shè)∠PAB=θ,且tanθ=t,∠PAQ=45°.
(1)試用t表示線段PQ;
(2)探究△QAP的周長是否為定值;
(3)試求四邊形APCQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,邊長為2的正方形有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率為
,則陰影區(qū)域的面積為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
計算:(1+
+
+
+…+
)
2+(
+
+
+…+
)
2+(
+
+…+
)
2+…+(
)
2+(1+
+
+
+…+
).
查看答案和解析>>