10.已知函數(shù)f(x)=ex,則當(dāng)x1<x2時(shí),下列結(jié)論正確的是( 。
A.e${\;}^{{x}_{1}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$B.e${\;}^{{x}_{1}}$<$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$
C.e${\;}^{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$D.e${\;}^{{x}_{2}}$<$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$

分析 求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,即可得出結(jié)論.

解答 解:∵f(x)=ex,∴f′(x)=ex,
∴x1<x2時(shí),f′(x2)=e${\;}^{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$,
故選:C.

點(diǎn)評 本題考查導(dǎo)數(shù)的幾何意義,考查直線的斜率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,已知a=2,b=$\sqrt{3}$,c=$\sqrt{2}$+1,則A=arccos$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)x,y∈R,定義x?y=x(a-y)(a∈R,且a為常數(shù)),若f(x)=ex,g(x)=e-x+2x2,F(xiàn)(x)=f(x)?g(x).
①g(x)不存在極值;
②若f(x)的反函數(shù)為h(x),且函數(shù)y=kx與函數(shù)y=|h(x)|有兩個交點(diǎn),則k=$\frac{1}{e}$;
③若F(x)在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-2];
④若a=-3,在F(x)的曲線上存在兩點(diǎn),使得過這兩點(diǎn)的切線互相垂直.
其中真命題的序號有②③.(把所有真命題序號寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x2+2a×log2(x2+2)+a2-3=0有唯一解,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=alnx+$\frac{1-a}{2}$x2-x,f′(x)=$\frac{(1-a)[x-\frac{a}{1-a}][x-1]}{x}$,若存在x0≥1,使得f(x0)<$\frac{a}{a-1}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某商店規(guī)定,某種商品一次性購買10kg以下按零售價(jià)格50元/kg銷售;若一次性購買量滿10kg,可打9折;若一次性購買量滿20kg,可按更優(yōu)惠價(jià)格40元/kg供貨.
(1)試寫出支付金額y(元)與購買量x(kg)之間的函數(shù)關(guān)系式;
(2)分別求出購買15kg和25kg應(yīng)支付的金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求如圖幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow$=(cosx,sinx),x∈[0,$\frac{π}{2}$].若|$\overrightarrow{a}$|=|$\overrightarrow$|,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知p:|x-2|≤5,q:x2-2x+1-m2≤0(m<0),且p是q的必要條件,則實(shí)數(shù)m的取值范圍是[-4,0).

查看答案和解析>>

同步練習(xí)冊答案