17.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),求cos($\frac{π}{3}$+α),sin($\frac{π}{3}$-α)的值.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα的值,利用兩角和與差的正弦函數(shù)公式,余弦函數(shù)公式即可計算得解.

解答 解:∵sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,
∴cos($\frac{π}{3}$+α)=$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα=$\frac{1}{2}×(-\frac{\sqrt{5}}{3})$-$\frac{\sqrt{3}}{2}×\frac{2}{3}$=-$\frac{2\sqrt{3}+\sqrt{5}}{6}$,
sin($\frac{π}{3}$-α)=$\frac{\sqrt{3}}{2}$×(-$\frac{\sqrt{5}}{3}$)-$\frac{1}{2}$×$\frac{2}{3}$=-$\frac{\sqrt{15}+2}{6}$.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的正弦函數(shù)公式,余弦函數(shù)公式在三角函數(shù)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.方程sinx-$\sqrt{3}$cosx=1-2a有解,則實(shí)數(shù)a的取值范圍為[-$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對應(yīng)邊分別為a,b,c,若${a^2}+{b^2}-{c^2}=\sqrt{3}ab$,則角C的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)$f(x)={log_{\frac{1}{3}}}({3{x^2}-ax+5})$在[-1,+∞)上單調(diào)遞減,則a的取值范圍是( 。
A.(-∞,-6]B.[-8,-6)C.(-8,-6]D.[-8,-6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=1,a2=3,an+2=$\frac{1}{2}$an,若數(shù)列{an}的前2n項(xiàng)和S2n<3p+1恒成立,則實(shí)數(shù)p的取值范圍是[$\frac{7}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:命題p:?x∈R,x2+ax+1≥0,命題q:?x∈[-2,0],x2-x+a=0,若命題p與命題q一真一假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,BC1∩B1C=E.求證:
(Ⅰ)DE∥平面AA1C1C;
(Ⅱ)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.偶函數(shù)f(x)在[0,6]上遞減,那么f(-π)與f(5)大小關(guān)系是f(-π)<f(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin($\frac{π}{4}$-x)=$\frac{5}{13}$,0<x<$\frac{π}{4}$,
(1)求$\frac{cos2x}{cos(\frac{π}{4}+x)}$的值
(2)求$\frac{sin2x}{sin(\frac{π}{4}+x)}$的值.

查看答案和解析>>

同步練習(xí)冊答案