7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,則f(1)=-1,若f(f(a))≤3,則實(shí)數(shù)a的取值范圍是(-∞,$\sqrt{3}$].

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,將x=1代入,可求出f(1);再討論f(a)的正負(fù),代入求出f(a)≥-3,再討論a的正負(fù),求實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,
∴f(1)=-12=-1,
①若f(a)<0,則f2(a)+2f(a)≤3,
解得,-3≤f(a)≤1,
即-3≤f(a)<0,
②若f(a)≥0,則-f2(a)≤3,顯然成立;
則f(a)≥-3,
③若a<0,則a2+2a≥-3,
解得,a∈R,
即a<0.
④若a≥0,則-a2≥-3,
解得,0≤a≤$\sqrt{3}$,
綜上所述,實(shí)數(shù)a的取值范圍是:(-∞,$\sqrt{3}$].
故答案為:-1;(-∞,$\sqrt{3}$].

點(diǎn)評 本題考查了分段函數(shù)的應(yīng)用,再已知函數(shù)值的范圍時(shí),要對自變量討論代入函數(shù)求解,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{12}{13}$,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( 。
A.11?B.12?C.13?D.14?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果直線ax+by=4與圓C:x2+y2=4有兩個(gè)不同的交點(diǎn),那么點(diǎn)(a,b)和圓C的位置關(guān)系是( 。
A.在圓外B.在圓上C.在圓內(nèi)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{sinx}{|cosx|}$,則函數(shù)f(x)的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對稱軸,以拋物線y2=16x的焦點(diǎn)為其中一個(gè)焦點(diǎn),以雙曲線$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{9}$=1的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若E,F(xiàn)是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),P是橢圓上任意一點(diǎn),則當(dāng)直線PE,PF的斜率都存在,并記為kPE、kPF時(shí),kPE•kPF是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)P(x,y)在曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù),且θ∈[π,2π))上,則點(diǎn)P到直線$\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.(t$為參數(shù))的距離的取值范圍是( 。
A.[-$\frac{{3\sqrt{2}}}{2}$,$\frac{{3\sqrt{2}}}{2}$]B.[$\frac{{3\sqrt{2}}}{2}$-1,$\frac{{3\sqrt{2}}}{2}$+1]C.($\sqrt{2}$,2$\sqrt{2}$]D.($\sqrt{2}$,$\frac{{3\sqrt{2}}}{2}$+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c.且C=2A,tanA=$\frac{{\sqrt{7}}}{3}$,a+c=5.
(Ⅰ)求sinA,cosA;
(Ⅱ)求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.以知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x(x-1),則關(guān)于m的不等式f(1-m)+f(1-m2)<0的解集為[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果圖中的程序執(zhí)行后輸出的結(jié)果是720,那么在程序While后面的條件應(yīng)為(  )
A.i>8B.i>7C.i≥7D.i≥6

查看答案和解析>>

同步練習(xí)冊答案