分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,將x=1代入,可求出f(1);再討論f(a)的正負(fù),代入求出f(a)≥-3,再討論a的正負(fù),求實(shí)數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,
∴f(1)=-12=-1,
①若f(a)<0,則f2(a)+2f(a)≤3,
解得,-3≤f(a)≤1,
即-3≤f(a)<0,
②若f(a)≥0,則-f2(a)≤3,顯然成立;
則f(a)≥-3,
③若a<0,則a2+2a≥-3,
解得,a∈R,
即a<0.
④若a≥0,則-a2≥-3,
解得,0≤a≤$\sqrt{3}$,
綜上所述,實(shí)數(shù)a的取值范圍是:(-∞,$\sqrt{3}$].
故答案為:-1;(-∞,$\sqrt{3}$].
點(diǎn)評 本題考查了分段函數(shù)的應(yīng)用,再已知函數(shù)值的范圍時(shí),要對自變量討論代入函數(shù)求解,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A. | 11? | B. | 12? | C. | 13? | D. | 14? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在圓外 | B. | 在圓上 | C. | 在圓內(nèi) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{{3\sqrt{2}}}{2}$,$\frac{{3\sqrt{2}}}{2}$] | B. | [$\frac{{3\sqrt{2}}}{2}$-1,$\frac{{3\sqrt{2}}}{2}$+1] | C. | ($\sqrt{2}$,2$\sqrt{2}$] | D. | ($\sqrt{2}$,$\frac{{3\sqrt{2}}}{2}$+1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>8 | B. | i>7 | C. | i≥7 | D. | i≥6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com