14.設(shè)z是復(fù)數(shù),則下列命題中的真命題是( 。
A.若z2<0,則|z|=-z+iB.若z2<0,則$\frac{z}{1+i}$的共軛虛數(shù)$\frac{z}{i-1}$
C.若z是虛數(shù),則z2≥0D.若z2≥0,則$\frac{z}{1+i}$的共軛虛數(shù)$\frac{z}{i-1}$

分析 設(shè)出z=a+bi,通過復(fù)數(shù)的運(yùn)算性質(zhì)以及共軛復(fù)數(shù)的定義進(jìn)行判斷即可.

解答 解:設(shè)z=a+bi,z2=a2-b2+2abi,
若z2<0,則a=0,
∴z=bi,∴|z|=b,而-z+i是虛數(shù),
故A錯(cuò)誤;
$\frac{z}{1+i}$=$\frac{bi}{1+i}$=$\frac{2}$+$\frac{2}$i,而$\frac{z}{i-1}$=$\frac{bi}{i-1}$=$\frac{2}$-$\frac{2}$i,是共軛復(fù)數(shù),
故B正確;
若z是虛數(shù),則z2>0,故C錯(cuò)誤;
若z2≥0,則b=0,z=a,是實(shí)數(shù),故D錯(cuò)誤;
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì),考查共軛復(fù)數(shù)的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$a={0.5^{\frac{1}{3}}},b={0.3^{\frac{1}{3}}},c={log_{0.3}}0.2$,則a、b、c的大小關(guān)系是(  )
A.c<b<aB.a<b<cC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△AOB中,點(diǎn)A(2,1),B(3,0),點(diǎn)E在射線OB上自O(shè)開始向右移動(dòng).設(shè)OE=x,過E作OB的垂線l,記△AOB在直線l左邊部分的面積為S,試寫出S與x的函數(shù)關(guān)系式,并畫出大致的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f(x)=x2+2ax-3,當(dāng)x∈[-1,1]時(shí),f(x)>0恒成立,則a的取值范圍是a>3或a<-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的前三項(xiàng)的和為-3,前三項(xiàng)的積為8,且a2,a3,a1成對(duì)比數(shù)列,則數(shù)列{|an|}的前n(n≥3)項(xiàng)和為Sn=$\frac{3}{2}{n}^{2}-\frac{11}{2}n+10$,(n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.把邊長為1的正方形ABCD沿對(duì)角線BD折起,形成三棱錐C-ABD,它的正視圖與俯視圖如圖所示,則三棱錐C-ABD的體積為$\frac{\sqrt{2}}{12}$,表面積為1+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,且過點(diǎn)$A({1,\frac{3}{2}})$.
(1)求橢圓C的方程;
(2)若點(diǎn)B在橢圓上,點(diǎn)D在y軸上,且$\overrightarrow{BD}$=2$\overrightarrow{DA}$,求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,真命題是( 。
A.?x0∈[0,$\frac{π}{2}$],sin x0+cos x0≥2B.?x∈(3,+∞),x2>2x+1
C.?x0∈R,x02+x0=-1D.?x∈($\frac{π}{2}$,π),tan x>sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí),f(x)>0,且對(duì)于任意正數(shù)x,y都有f(xy)=f(x)+f(y).
(1)證明:函數(shù)f(x)在定義域上是單調(diào)增函數(shù);
(2)如果f(${\frac{1}{3}}$)=-1且f(x)-f(${\frac{1}{x-2}}$)≥2,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案