分析 根據(jù)三角形的面積公式結(jié)合分段函數(shù)的表達式關(guān)系進行表示即可得到結(jié)論.
解答 解:當(dāng)0≤x≤2時,△OEF的高EF=$\frac{1}{2}$x,
∴S=$\frac{1}{2}$x•$\frac{1}{2}$x=$\frac{1}{4}$x2;
當(dāng)2<x≤3時,△BEF的高EF=3-x,
∴S=$\frac{1}{2}$×3×1-$\frac{1}{2}$(3-x)•(3-x)=-$\frac{1}{2}$x2+3x-3;
當(dāng)x>3時,S=$\frac{3}{2}$.
∴$S=\left\{\begin{array}{l}\frac{1}{4}{x^2}(0≤x≤2)\\-\frac{1}{2}{x^2}+3x-3(2<x<3)\\ \frac{3}{2}(x≥3)\end{array}\right.$,
函數(shù)圖象如圖所示.
點評 本題主要考查分段函數(shù)的表達式的求解,根據(jù)三角形的面積公式是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相等 | B. | 方向相同 | C. | 方向相反 | D. | 方向相同或相反 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若z2<0,則|z|=-z+i | B. | 若z2<0,則$\frac{z}{1+i}$的共軛虛數(shù)$\frac{z}{i-1}$ | ||
C. | 若z是虛數(shù),則z2≥0 | D. | 若z2≥0,則$\frac{z}{1+i}$的共軛虛數(shù)$\frac{z}{i-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0≤a≤21 | B. | a=0或 a=7 | C. | a<0或a>21 | D. | a=0或a=21 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com