11.在△ABC中,$a=7,b=4\sqrt{3},c=\sqrt{13}$,則△ABC的最小角為( 。
A.60°B.30°C.15°D.45°

分析 由三角形中大邊對(duì)大角可知,邊c所對(duì)的角C最小,然后利用余弦定理的推論求得cosC,則答案可求.

解答 解:在△ABC中,∵$a=7,b=4\sqrt{3},c=\sqrt{13}$,
∴由大邊對(duì)大角可知,邊c所對(duì)的角C最小,
由余弦定理可得:$cosC=\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}=\frac{49+48-13}{2×7×4\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
∵0°<C<180°,∴C=30°.
故選:B.

點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,考查了三角形中的邊角關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知{an}是等差數(shù)列,其前n的項(xiàng)和為Sn,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1=2,b1=1,a3+b3=8,S4+b2=16.
(1)求an與bn;
(2)記數(shù)列{$\frac{{a}_{n}-1}{_{n}}$}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知互不相等的三個(gè)正實(shí)數(shù)a,b,c成等比數(shù)列,且logca,logbc,logab構(gòu)成公差為d的等差數(shù)列,則此公差d=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=$\frac{ax-1}{{x}^{2}-1}$
(Ⅰ)解關(guān)于a的不等式$\frac{ax-1}{{{x^2}-1}}>0$的解集是{a|a>$\frac{1}{3}$},求x的值;
(Ⅱ)解關(guān)于x的不等式:$\frac{ax-1}{{{x^2}-1}}>0$(a≤0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)$y=tan\frac{x}{a}$的最小正周期是( 。
A.B.|a|πC.$\frac{π}{a}$D.$\frac{π}{|a|}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知角α的終邊在第二象限,且與單位圓交于點(diǎn)P(m,$\frac{\sqrt{15}}{4}$).
(1)求實(shí)數(shù)m的值;
(2)求$\frac{\sqrt{2}sin(α+\frac{π}{4})}{\sqrt{15}sin(5π-α)-sin(α-\frac{3π}{2})+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(-1,m),$\overrightarrow c$=(-1,2),若($\overrightarrow a$+$\overrightarrow b$)∥$\overrightarrow c$,則m=-1;若($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow c$,則m=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)對(duì)任意x∈R都有f(x+2)=-f(x),且y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,當(dāng)x∈(0,2)時(shí)f(x)=2x2,則f(2015)=( 。
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$\frac{1+2i}{(1-i)^{2}}$=$-1+\frac{i}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案