14.已知角x的終邊上一點坐標為$({sin\frac{5π}{6},cos\frac{5π}{6}})$,則角x的最小值為( 。
A.$\frac{5π}{6}$B.$\frac{5π}{3}$C.$\frac{11π}{6}$D.$\frac{2π}{3}$

分析 求出點的坐標,利用正切函數(shù),即可求出角x的最小值.

解答 解:角x的終邊上一點坐標為$({sin\frac{5π}{6},cos\frac{5π}{6}})$,即($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
∴tanx=-$\sqrt{3}$,
∴角x的最小值為$\frac{2π}{3}$.
故選:D.

點評 本題考查三角函數(shù)的定義,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.在極坐標系中,求:圓ρ=4cosθ的圓心到直線θ=$\frac{π}{6}$(ρ∈R)的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.要得到函數(shù)y=cos(π-2x)的圖象,只需要將函數(shù)$y=cos(2x-\frac{π}{3})$的圖象( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在直棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,側棱AA1=2,D、E分別是CC1與A1B的中點,點E在平面ABD上的射影是△ABD的重心G.
(1)求A1B與平面ABD所成角的正弦值;
(2)求點A1到平面AED的距離.
(3)若P為側棱CC1上的一個動點(含端點),平面AEP與平面BCC1B1所成銳角為θ,求sinθ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質量指標值,由測量表得如下頻數(shù)分布表:
質量指標值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數(shù)62638228
(Ⅰ)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(Ⅱ)估計這種產(chǎn)品質量指標值的眾數(shù)、中位數(shù)及平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.為了得到函數(shù)$y=\sqrt{2}cos3x$的圖象,可以將函數(shù)y=$\sqrt{2}$cos$\frac{3}{2}$x的圖象所有點的(  )
A.橫坐標伸長到原來的2倍(縱坐標不變)得到
B.橫坐標縮短到原來的$\frac{1}{2}$(縱坐標不變)得到
C.縱坐標伸長到原來的2倍(橫坐標不變)得到
D.縱坐標縮短到原來的$\frac{1}{2}$(橫坐標不變)得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C的半徑為1,圓心C在直線3x-y=0上.
(Ⅰ)若圓C被直線x-y+3=0截得的弦長為$\sqrt{2}$,求圓C的標準方程;
(Ⅱ)設點A(0,3),若圓C上總存在兩個點到點A的距離為2,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若非零向量$\vec a$與向量$\vec b$的夾角為鈍角,$|{\vec b}|=2$,且當$t=-\frac{1}{2}$時,$|{\vec b-t\vec a}|$(t∈R)取最小值$\sqrt{3}$.向量$\vec c$滿足$({\vec c-\vec b})⊥({\vec c-\vec a})$,則當$\vec c•({\vec a+\vec b})$取最大值時,$|{\vec c-\vec b}|$等于( 。
A.$\sqrt{6}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合U=R,則正確表示集合M={-1,0,1}和N={x∈Z|x2+x≤0}關系的韋恩(Venn)圖是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案