A. | (x-1)2+(y+1)2=1 | B. | (x-1)2+(y-1)2=1 | C. | (x+1)2+(y+1)2=1 | D. | (x+1)2+(y-1)2=1 |
分析 設圓心坐標C(x,y),由對稱知識求出圓心C的坐標為(1,-1),由此能求出半徑為1的圓C的標準方程.
解答 解:設C(x,y),則由已知得$\left\{\begin{array}{l}\frac{x+2}{2}+\frac{y}{2}-1=0\\ \frac{y}{x-2}=1\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=-1.\end{array}\right.$
所以圓心為C(1,-1),所以圓C的標準方程為(x-1)2+(y+1)2=1.
故選:A.
點評 本題考查圓的標準方程的求法,是中檔題,解題時要認真審題,注意對稱知識的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{c}=\frac{2}{a}+\frac{1}$ | B. | $\frac{1}{c}=\frac{2}{a}+\frac{2}$ | C. | $\frac{1}{c}=\frac{1}{a}+\frac{1}$ | D. | $\frac{2}{c}=\frac{1}{a}+\frac{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5π}{4}$ | B. | $\frac{2π}{5}$ | C. | $(6-2\sqrt{5})π$ | D. | $\frac{5π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com