13.若函數(shù)y=x2-x的圖象在點(diǎn)x=2處的切線被圓C:x2+y2=r2(r>0)所截得的弦長(zhǎng)是$\frac{2\sqrt{10}}{5}$,則r=( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),可得切線的方程,求出圓心到直線的距離,再由弦長(zhǎng)公式可得半徑r的值.

解答 解:函數(shù)y=x2-x的導(dǎo)數(shù)為y′=2x-1,
即有圖象在點(diǎn)x=2處的切線斜率為3,切點(diǎn)為(2,2),
則切線的方程為y-2=3(x-2),
即為3x-y-4=0,
圓心(0,0)到直線3x-y-4=0的距離為d=$\frac{4}{\sqrt{10}}$,
由弦長(zhǎng)公式可得2$\sqrt{{r}^{2}-\frac{16}{10}}$=$\frac{2\sqrt{10}}{5}$,
解得r=$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,同時(shí)考查直線和圓的位置關(guān)系,以及弦長(zhǎng)公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為5x+2y+1=0,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為( 。
A.4B.-$\frac{1}{4}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù) f(x)=sin(x+φ)-2sinφcosx的值域是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|x≥1},N={x|x2≤4},則∁R(M∩N)=( 。
A.[-1,2]B.[-2,-1]C.(-∞,1)∪(2,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若圓C的半徑為1,圓心C與點(diǎn)(2,0)關(guān)于直線x+y-1=0對(duì)稱,則圓C的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x+1)2+(y+1)2=1D.(x+1)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:$\frac{2x}{x-1}$<1,命題q:(x+a)(x-3)<0,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.(-3,-1]B.[-3,-1]C.[1,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow$可以為(  )
A.(1,2)B.(1,-2)C.(2,1)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)在[a,b]上有定義,若對(duì)任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出如下題:
①f(x)在[1,3]上的圖象時(shí)連續(xù)不斷的  
②f(x)在[1,$\sqrt{3}$]上具有性質(zhì)P
③若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3]
④對(duì)任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命題的序號(hào)③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在銳角三角形ABC中,下列結(jié)論正確的是( 。
A.sinA>sinBB.cosA>cosBC.sinA>cosBD.cosA>sinB

查看答案和解析>>

同步練習(xí)冊(cè)答案