A. | π | B. | $\frac{3π}{2}$ | C. | 2π | D. | 4π |
分析 由條件求得sin($\frac{π}{3}$+φ)=1,φ=$\frac{π}{6}$,再利用三角恒等變換化簡函數的解析式為f(x)=2sin(2x+$\frac{π}{3}$)+$\sqrt{3}$-1,再根據y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$,得出結論.
解答 解:∵函數f(x)=4cosxsin(x+φ)-1,f($\frac{π}{3}$)=2sin($\frac{π}{3}$+φ)-1=1,
∴sin($\frac{π}{3}$+φ)=1.
由0<φ<π可得 $\frac{π}{3}$<$\frac{π}{3}$+φ<π+$\frac{π}{3}$,∴$\frac{π}{3}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
故f(x)=4cosxsin(x+$\frac{π}{3}$)-1=2sinxcosx+2$\sqrt{3}$cos2x-1=sin2x+$\sqrt{3}$cos2x+$\sqrt{3}$-1
=2sin(2x+$\frac{π}{3}$)+$\sqrt{3}$-1,
則f(x)的最小正周期為$\frac{2π}{2}$=π,
故選:A.
點評 本題主要考查三角恒等變換,三角函數的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com