11.若a是從區(qū)間[0,2]中任取的一個(gè)實(shí)數(shù),b是從區(qū)間[0,3]中任取的一個(gè)實(shí)數(shù),則a<b的概率是( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 由題意知本題是一個(gè)幾何概型,根據(jù)所給的條件作出試驗(yàn)發(fā)生是包含的所有事件是一個(gè)矩形區(qū)域,做出面積,看出滿足條件的事件對(duì)應(yīng)的面積,根據(jù)幾何概型公式得到結(jié)果.

解答 解:如圖,所有的基本事件對(duì)應(yīng)集合Ω={(a,b)|0≤a≤2,0≤b≤3},
所構(gòu)成的區(qū)域?yàn)榫匦渭捌鋬?nèi)部,其面積為S=3×2=6,
事件A對(duì)應(yīng)的集合A={(a,b)|0≤a≤2,0≤b≤3,且a<b},
且在直線a=b的右上方部分,其面積S'=6-$\frac{1}{2}$×2×2=4,
故事件A發(fā)生的概率P(A)=$\frac{4}{6}$=$\frac{2}{3}$,
故選:A.

點(diǎn)評(píng) 古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=cos2x-2acosx+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某地?cái)M建造一座大型體育館,其設(shè)計(jì)方案側(cè)面的外輪廓如圖所示:曲線AB是以點(diǎn)E為圓心的圓的一部分,其中E(0,t)(0<t≤25);曲線BC是拋物線y=-ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圓E的半徑.假定擬建體育館的高OB=50(單位:米,下同).
(1)若t=20、a=$\frac{1}{49}$,求CD、AD的長度;
(2)若要求體育館側(cè)面的最大寬度DF不超過75米,求a的取值范圍;
(3)若a=$\frac{1}{25}$,求AD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“b≠0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各函數(shù)為偶函數(shù),且在[0,+∞)上是減函數(shù)的是( 。
A.y=x+3B.y=x2+xC.y=x|x|D.y=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(diǎn)$P(2,\sqrt{3})$,且它的離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓(x-1)2+y2=1相切的直線l:y=kx+t(k∈R,t∈R)交橢圓E于M、N兩點(diǎn),若橢圓E上一點(diǎn)C滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),過點(diǎn)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)M(-a,0)斜率為k的直線交橢圓于點(diǎn)N,直線NO(O為坐標(biāo)原點(diǎn))交橢圓于另一點(diǎn)P,若k∈[$\frac{1}{2}$,1],求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(2x)•log2(4x),且$\frac{1}{4}$≤x≤4.
(1)求f($\sqrt{2}$)的值;
(2)若令t=log2x,求實(shí)數(shù)t的取值范圍;
(3)將y=f(x)表示成以t(t=log2x)為自變量的函數(shù),并由此求函數(shù)y=f(x)的最小值與最大值及與之對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,定義在[-1,1]上的函數(shù)f(x)的圖象為折線AOB.若方程f(x)-mx-m=0有兩個(gè)不等的實(shí)根,則實(shí)數(shù)m的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊答案