19.“b≠0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)⇒b≠0,a=0,反之不成立.

解答 解:復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)⇒b≠0,a=0,反之不成立.
∴“b≠0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的必要不充分條件.
故選:B.

點評 本題考查了純虛數(shù)的定義、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.集合A={x|3x+2≤-x2},B={x|(3-x)(x+2)≥0},集合N={x||x|≤a,a>0}
(1)若M=A∪B且M∩N=N,求實數(shù)a的取值范圍;
(2)若M=A∪B且M∪N=N,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓的中心在原點,焦點在x軸上,短軸長為10,離心率為$\frac{2}{3}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以橢圓焦點為頂點,頂點為焦點的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點A(2,0),且過點$(-1,\frac{{\sqrt{3}}}{2})$
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于M,N兩點,線段MN的中點為P,記直線PB的斜率為k2,求證:k1•k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在四面體O-ABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,D為BC的中點,則$\overrightarrow{AD}$=$\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\overrightarrow a$(用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,$f(x)={x^2}+\frac{2}{x}$,則f(-1)=( 。
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a是從區(qū)間[0,2]中任取的一個實數(shù),b是從區(qū)間[0,3]中任取的一個實數(shù),則a<b的概率是( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)$\overrightarrow{m}$=(a,$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=(cosC,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=b.
(Ⅰ)若sin(A+θ)=$\frac{1}{3}$,求cos($\frac{π}{3}$-θ)的值;
(Ⅱ)若b=4,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=3x-2x-3的零點的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案