A. | $\frac{{2-\sqrt{2}}}{2}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{4-\sqrt{14}}}{4}$ |
分析 a,b是方程x2+2x+c=0的兩個實根,利用根與系數(shù)的關系及其0≤c≤$\frac{1}{2}$,可得|a-b|=$\sqrt{(a+b)^{2}-4ab}$,即可得出兩條平行直線的距離,進而得出.
解答 解:∵a,b是方程x2+2x+c=0的兩個實根,
∴a+b=-2,ab=c.
又0≤c≤$\frac{1}{2}$,
∴|a-b|=$\sqrt{(a+b)^{2}-4ab}$=$\sqrt{4-4c}$∈[$\sqrt{2}$,2].
兩條平行直線的距離d=$\frac{|a-b|}{2}$∈$[\frac{\sqrt{2}}{2},1]$.
∴這兩條平行直線之間的距離的最大值和最小值的差=1-$\frac{\sqrt{2}}{2}$=$\frac{2-\sqrt{2}}{2}$.
故選:A.
點評 本題考查了一元二次方程的根與系數(shù)的關系、弦長公式、平行線之間的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{π}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-$\frac{1}{x}$ | B. | y=3-x-3x | C. | y=x|x| | D. | y=x3-x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | arctan$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com