11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的離心率為2,那么該雙曲線的漸近線方程為$\sqrt{3}x±y=0$.

分析 利用雙曲線的離心率求出a、b關(guān)系,然后求解雙曲線的漸近線方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的離心率為2,可得$\frac{c}{a}=2$,即:$\frac{{a}^{2}+^{2}}{{a}^{2}}=4$,
可得$\frac{a}=\sqrt{3}$,
該雙曲線的漸近線方程為:$\sqrt{3}x±y=0$.
故答案為:$\sqrt{3}x±y=0$.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面上有以O(shè)為圓心,以1為半徑的圓,圓上有三點(diǎn)A,B,C,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足等式m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,這里m,n∈R、mn≠0.
(1)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,證明:m2+n2=1;
(2)若m=n=-1,試判斷△ABC的形狀并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知關(guān)于x的方程${e^x}+{e^{-x}}-2a{log_2}(|x|+2)+{a^2}=5$有唯一實(shí)數(shù)解,則實(shí)數(shù)a的值為( 。
A.-1B.1C.-1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的單位長(zhǎng)度,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合U={0,1,2},A={x|x2=x,x∈R},則∁UA={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.2022年冬奧會(huì)高山滑雪項(xiàng)目將在延慶小海坨山舉行.小明想測(cè)量一下小海坨山的高度,他在延慶城區(qū)(海拔約500米)一塊平地上仰望小海坨山頂,仰角15度,他向小海坨山方向直行3400米后,再仰望小海坨山頂,此時(shí)仰角30度,問(wèn)小明測(cè)的小海坨山海拔約有2200米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:?x∈(0,+∞),x=sinx,命題q:?x∈R,ex>1,則以下為真命題的是( 。
A.p∨qB.p∧qC.p∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知變量x,y滿足$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ 2x+y≤6\end{array}\right.$,則z=2x-y的最大值為(  )
A.2B.10C.1D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}-1$(x∈R).
(1)求f(x)的最小正周期;及對(duì)稱軸方程
(2)求f(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上的最大值和最小值,并分別寫出相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案