分析 (1)運(yùn)用向量垂直的條件:數(shù)量積為0,以及平方法,向量的平方即為模的平方,化簡(jiǎn)整理即可得證;
(2)△ABC的形狀為等邊三角形.由平方法,運(yùn)用向量的平方即為模的平方,以及向量的數(shù)量積的定義和夾角,即可得到結(jié)論.
解答 解:(1)證明:由$\overrightarrow{OA}⊥\overrightarrow{OB}$,可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
由m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,
兩邊平方可得m2$\overrightarrow{OA}$2+n2$\overrightarrow{OB}$2+2mn$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OC}$2,
由A,B,C在半徑為1的圓上,可得:
m2+n2=1;
(2)△ABC的形狀為等邊三角形.
當(dāng)m=n=-1,即有$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
即有$\overrightarrow{OA}$+$\overrightarrow{OB}$=-$\overrightarrow{OC}$,
兩邊平方可得,$\overrightarrow{OA}$2+$\overrightarrow{OB}$2+2$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OC}$2,
即為$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{1}{2}$=1•1•cos∠AOB,
可得∠AOB=120°,
同理可得∠BOC=120°,∠COA=120°,
即有△ABC的內(nèi)角均為60°,
則△ABC的形狀為等邊三角形.
點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和性質(zhì),主要考查向量的平方即為模的平方,考查三角形的形狀的判斷,注意運(yùn)用平方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(n)中共有n項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | |
B. | f(n)中共有n+1項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | |
C. | f(n)中共有n2-n項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | |
D. | f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1-ln2}{2}$ | B. | $\frac{ln2}{2}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{2-2ln2}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com