4.在直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,A是C上的動(dòng)點(diǎn),且滿足|AF|的最小值為2-$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在橢圓C上任取一點(diǎn)B,使OA⊥OB,求證:點(diǎn)O到直線AB的距離為定值.

分析 (1)利用|AF|的最小值為2-$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$,求出a,c,b,即可求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(x1,y1),B(x2,y2),分類討論:①當(dāng)直線AB斜率不存在時(shí),由橢圓的對(duì)稱性,可求原點(diǎn)O到直線的距離;②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,利用韋達(dá)定理及點(diǎn)到直線的距離公式,即可得到結(jié)論

解答 (1)解:∵|AF|的最小值為2-$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
∴a-c=2-$\sqrt{3}$,離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
∴$a=2,c=\sqrt{3}$,
∴b=1,
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)證明:設(shè)A(x1,y1),B(x2,y2),
①當(dāng)直線AB斜率不存在時(shí),由橢圓的對(duì)稱性可知x1=x2,y1=-y2
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
∴x1x2+y1y2=0,∴x12-y12=0
∵x12+4y12=4,∴|x1|=|y1|=$\frac{2\sqrt{5}}{5}$
∴原點(diǎn)O到直線的距離為d=|x1|=$\frac{2\sqrt{5}}{5}$
②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
∴x1x2+y1y2=0,∴(1+k2)$\frac{4{m}^{2}-4}{1+4{k}^{2}}$-km×$\frac{8km}{1+4{k}^{2}}$+m2=0
∴5m2=4(k2+1)
∴原點(diǎn)O到直線的距離為d=$\frac{|m|}{\sqrt{{k}^{2}+1}}$=$\frac{2\sqrt{5}}{5}$.
綜上,點(diǎn)O到直線AB的距離為定值.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查圓與橢圓的綜合,聯(lián)立方程,利用韋達(dá)定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={x|x<-1或x>2},集合B={x|1<x<3},則(∁RA)∩B={x|1<x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線x+m2y+6=0與直線(m-2)x+3my+2m=0平行,則實(shí)數(shù)m的值為( 。
A.m=0或m=3B.m=-1或m=3C.m=0或m=-1D.m=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將半徑為5的圓分割成面積之比為1:2:3的三個(gè)扇形作為三個(gè)圓錐的側(cè)面,設(shè)這三個(gè)圓錐的底面半徑依次為r1,r2,r3,則r1+r2+r3=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)P在直線P1P2上,且$\overrightarrow{{P}_{1}P}$=$\frac{2}{5}$$\overrightarrow{P{P}_{2}}$,若點(diǎn)P1,P2,P的坐標(biāo)分別為(x,-1,3),(-2,y,1),(3,0,z),求x,y,z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.光線從點(diǎn)A(-3,4)出發(fā)射到x軸上,被x軸反射到y(tǒng)軸上,又被y軸反射后到點(diǎn)B(-1,6),求光線所經(jīng)過的路途長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x)=f(2-x),且當(dāng)x∈[0,1]時(shí),f(x)=x3,則方程f(x-1)=cosπx(-2≤x≤4)所有實(shí)根的和為( 。
A.12B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.?dāng)?shù)列{an}滿足:a1=1,a2=3,3an+2=2an+1+an,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓0:x2+y2=r2(r>0)與直線x+2y-5=0相切.
(1)求圓O的方程;
(2)若過點(diǎn)(-1,3)的直線l被圓0所截得的弦長為4,求直線1的方程;
(3)若過點(diǎn)A(0,$\sqrt{5}$)作兩條斜率分別為k1,k2的直線交圓0于B、C兩點(diǎn),且k1k2=-$\frac{1}{2}$,求證:直線BC恒過定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案