分析 把已知數(shù)列遞推式變形,得到等比數(shù)列{an+1-an},求其通項(xiàng)公式后,再利用累加法求an.
解答 解:由3an+2=2an+1+an,得
3(an+2-an+1)=-(an+1-an),
∵a1=1,a2=3,
∴a2-a1=2≠0,
則數(shù)列{an+1-an}是以2為首項(xiàng),以-$\frac{1}{3}$為公比的等比數(shù)列,
∴${a}_{n+1}-{a}_{n}=2×(-\frac{1}{3})^{n-1}$.
即${a}_{2}-{a}_{1}=2×(-\frac{1}{3})^{0}$,
${a}_{3}-{a}_{2}=2×(-\frac{1}{3})^{1}$,
…
${a}_{n}-{a}_{n-1}=2×(-\frac{1}{3})^{n-2}$(n≥2).
上邊n-1個(gè)等式相加得:${a}_{n}-{a}_{1}=2[(-\frac{1}{3})^{0}+(-\frac{1}{3})^{1}+…+(-\frac{1}{3})^{n-2}]$
=2×$\frac{1-(-\frac{1}{3})^{n-1}}{1+\frac{1}{3}}$=$\frac{3}{2}[1-(-\frac{1}{3})^{n-1}]$.
∴${a}_{n}=\frac{5}{2}+\frac{(-1)^{n}}{{3}^{n-2}}$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了類加法求數(shù)列的通項(xiàng)公式,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=n-3 | B. | an=$\frac{1}{2}$(n3-8n2+13n+2) | ||
C. | an=$\frac{1}{2}$(2n3-17n2+33n-10) | D. | an=$\frac{1}{2}$(n2-7n+14) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com