精英家教網 > 高中數學 > 題目詳情
10.命題:“?x∈R,ex≤x”的否定是$?{x_0}∈R,使{e^{x_0}}>{x_0}$(寫出否定命題)

分析 利用全稱命題的否定是特稱命題寫出結果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題:“?x∈R,ex≤x”的否定是:$?{x_0}∈R,使{e^{x_0}}>{x_0}$.
故答案為:$?{x_0}∈R,使{e^{x_0}}>{x_0}$.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.下列各式恒成立的是(  )
A.tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$B.$\frac{1+cos2α}{2}$=cos2α
C.$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=tanαD.±$\sqrt{\frac{1-cosα}{1+cosα}}$=tan$\frac{α}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.矩形ABCD中,AB=2$\sqrt{3}$,AD=2,點E、F分別為線段BC、CD邊上的動點,且滿足EF=1,則$\overrightarrow{AE}$$•\overrightarrow{AF}$的最小值是( 。
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則(  )
A.函數f(x)在區(qū)間[0,$\frac{π}{2}$]上單調遞增B.函數f(x)在區(qū)間[0,$\frac{π}{2}$]上單調遞減
C.函數f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-2D.函數f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)與向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共線,其中A是△ABC的內角,則角A的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知實數x,y滿足:$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4<0}\\{x-1≥0}\end{array}\right.$,則使等式(t+2)x+(t-1)y+2t+4=0成立的t取值范圍為( 。
A.[-$\frac{5}{4}$,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞)C.[-$\frac{5}{4}$,1)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.我國古代數學名著《續(xù)古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對角線上的三個數的和都相等(如圖所示),我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數是( 。
834
159
672
A.9B.8C.6D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.$\frac{1}{{tan{{20}°}}}-\frac{1}{{cos{{10}°}}}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=$lo{g}_{({a}^{2}-x)}$(2x+1)在(-$\frac{1}{2}$,0)內恒有f(x)>0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案