A. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞增 | B. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞減 | ||
C. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-2 | D. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-1 |
分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)求出φ的值,可得函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域求得函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最值.
解答 解:由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象,
可得 A=2,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{7π}{12}$,求得ω=2.
再根據(jù)圖象經(jīng)過點(diǎn)($\frac{7π}{12}$,0),可得2•$\frac{7π}{12}$+φ=kπ,k∈Z,求得φ=-$\frac{π}{6}$,
故f(x)=2sin(2x-$\frac{π}{6}$).
在區(qū)間[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],f(x)∈[-1,2],
故f(x)在區(qū)間[0,$\frac{π}{2}$]上沒有單調(diào)性,當(dāng)f(x)有最小值為-1,故排除A、B、C,
故選:D.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)求出φ的值,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | -3 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com