分析 (1)根據(jù)一元二次函數(shù)的性質(zhì)建立不等式關(guān)系進(jìn)行求解即可.
(2)判斷函數(shù)g(x)的單調(diào)性,利用參數(shù)分離法進(jìn)行求解即可.
解答 解:∵y=f(x)在x∈(-∞,1]單調(diào)遞增,在x∈[1,+∞)單調(diào)遞減,且有最大值4,
∴$\left\{{\begin{array}{l}{-\frac{-b}{2a}=1}\\{a-b+3=4}\end{array}}\right.$解得:$\left\{{\begin{array}{l}{a=-1}\\{b=-2}\end{array}}\right.$…..(3分),
∴f(x)=-x2+2x+3…..(4分)
(2)由(1)$g(x)=\frac{{-{x^2}+2x+3}}{x}$=$\frac{3}{x}-x+2$,
則g′(x)=-$\frac{3}{{x}^{2}}$-1<0恒成立,
∵θ∈R,
∴-1≤sinθ≤1,1≤2+sinθ≤3…..(5分)
∴g(x)在[1,3]上是單調(diào)減函數(shù)…..(9分),
∴當(dāng)g(2+sinθ)min=g(3)=0…..(10分)
∴m2-m≤0,
∴0≤m≤1…(12分)
點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,以及不等式恒成立問(wèn)題,利用參數(shù)分離法結(jié)合函數(shù)的最值問(wèn)題是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -2 | C. | ±1 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③④ | B. | ③ | C. | ①③ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com