【題目】中,根據(jù)條件,判斷的形狀.

1

2.

【答案】1)等腰三角形;(2)等腰三角形或直角三角形

【解析】

1)根據(jù)降冪公式代入化簡(jiǎn)可知,代入等式,結(jié)合誘導(dǎo)公式及余弦和角公式化簡(jiǎn),可得,再根據(jù)余弦差角公式的性質(zhì)及余弦函數(shù)性質(zhì)即可判斷三角形的形狀.

2)根據(jù)正弦定理,將邊化為角,化簡(jiǎn)變形后結(jié)合正弦二倍角公式及正弦函數(shù)的性質(zhì)即可判斷三角形的形狀.

1)由降冪公式可知,

代入等式可知

化簡(jiǎn)變形可得,

由誘導(dǎo)公式及余弦和角公式可知

代入上式可得

移項(xiàng)可得,

,即,

所以為等腰三角形.

2)由正弦定理可知,(外接圓半徑),

所以可化為,

化簡(jiǎn)變形可得,

,

所以,

兩邊同時(shí)乘以2,由正弦二倍角公式可知

由正弦函數(shù)性質(zhì)可知,

所以

為等腰三角形或直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,所有棱長(zhǎng)都等于.

(1)當(dāng)點(diǎn)的中點(diǎn)時(shí),

①求異面直線所成角的余弦值;

②求二面角的正弦值;

(2)當(dāng)點(diǎn)在線段上(包括兩個(gè)端點(diǎn))運(yùn)動(dòng)時(shí),求直線與平面所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知四棱錐的底面為矩形, 底面,且),, 分別是, 的中點(diǎn).

(1)當(dāng)為何值時(shí),平面平面?并證明你的結(jié)論;

(2)當(dāng)異面直線所成角的正切值為2時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在梯形ABCD中,DCABDCCB,EAB的中點(diǎn),且AB=2BC=2CD=4(如圖所示),將ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點(diǎn),且AF=2DF

(Ⅰ)求四棱錐A-BCDE的體積;

(Ⅱ)在線段BE上是否存在一點(diǎn)G,使EF∥平面ACG?若存在,請(qǐng)指出點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)為的橢圓被直線截得的弦的中點(diǎn)的橫坐標(biāo)為.

(1)求此橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),且以為對(duì)角線的菱形的一個(gè)頂點(diǎn)為,面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):

①sin213°+cos217°﹣sin13°cos17°;

②sin215°+cos215°﹣sin15°cos15°;

③sin218°+cos212°﹣sin18°cos12°;

④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°

⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°

(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);

(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并證明你的結(jié)論.

(參考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβsinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校組織的高二女子排球比賽中,有、兩個(gè)球隊(duì)進(jìn)入決賽,決賽采用74勝制.假設(shè)、兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為

(Ⅰ)求大于4的概率;

(Ⅱ)求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,H是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口H的中點(diǎn),點(diǎn)EF分別落在線段上.已知,記

1)試將污水管道的長(zhǎng)度表示為的函數(shù),并寫出定義域;

2)已知,求此時(shí)管道的長(zhǎng)度l;

3)當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案