分析 對于命題p:可得△≥0,解得a范圍.對于命題q:a=0時,不等式化為:1>0,滿足條件;a≠0時,可得$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$,解得a范圍.由p∧q為假,p∨q為真,可得:命題p和q一個為真,一個為假.
解答 解:對于命題p:“存在x∈R,使x2+2ax+2-a=0”,∴△=4a2-4(2-a)≥0,解得a≤-2,或a≥1.
對于命題q:“不等式ax2-ax+1>0對?x∈R恒成立”,a=0時,不等式化為:1>0,滿足條件;a≠0時,可得$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$,解得0<a<4.綜上可得:0≤a<4.
∵p∧q為假,p∨q為真,
∴命題p和q一個為真,一個為假.
當p真q假時,$\left\{\begin{array}{l}{a≤-2或a≥1}\\{a<0或a≥4}\end{array}\right.$,解得a≤-2或a≥4;
當p假q真時,$\left\{\begin{array}{l}{-2<a<1}\\{0≤a<4}\end{array}\right.$,解得0≤a<1.
綜上所述:a的取值范圍是(-∞,-2]∪[0,1)∪[4,+∞).
點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 280 | B. | 300 | C. | 210 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com