7.函數(shù)$f(x)=2x-\frac{a}{x}$的定義域?yàn)椋?,1](a為實(shí)數(shù)),若函數(shù)y=f(x)在定義域上是減函數(shù),則a的取值范圍a≤-2.

分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行求解即可.

解答 解:∵函數(shù)f(x)的定義域?yàn)椋?,1],
∴若函數(shù)y=f(x)在定義域上是減函數(shù),
則f′(x)≤0成立,
即f′(x)=2+$\frac{a}{{x}^{2}}$≤0,$\frac{a}{{x}^{2}}$≤-2,
則a≤-2x2
當(dāng)0<x≤1時(shí),-2≤-2x2<0,
則a≤-2,
故答案為:a≤-2

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)$f(x)=2cos(\frac{π}{3}-\frac{x}{2})$,
(1)求f(x)的周期;
(2)當(dāng)x∈[-π,π]時(shí),求f(x)單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0,2π]時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a+bi=$\frac{5}{1+2i}$(i是虛數(shù)單位,a,b∈R),則ab=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列正確命題有③④.
①“$sinθ=\frac{1}{2}$”是“θ=30°”的充分不必要條件
②如果命題“¬(p或q)”為假命題,則 p,q中至多有一個(gè)為真命題
③設(shè)a>0,b>1,若a+b=2,則$\frac{2}{a}$+$\frac{1}{b-1}$的最小值為3+2$\sqrt{2}$
④函數(shù)f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,則a的取值范圍是$a<-1或a>\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且圖象過點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$),函數(shù)g(x)=f(x)f(x-$\frac{π}{4}$)的單調(diào)遞增區(qū)間[$\frac{kπ}{2}$-$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,sin$\frac{∠ABC}{2}$=$\frac{\sqrt{3}}{3}$,AB=2,點(diǎn)D在線段AC上,且AD=2DC,BD=$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求cos∠ABC;
(Ⅱ)求BC和AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一長方體的長,寬,高分別為3$\sqrt{2}$cm,4$\sqrt{2}$cm,5$\sqrt{2}$cm,則該長方體的外接球的體積是( 。
A.$\frac{100π}{3}$cm3B.$\frac{208π}{3}$cm3C.$\frac{500π}{3}$cm3D.$\frac{416\sqrt{3}π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.到直線4x+3y-5=0的距離為1的點(diǎn)的軌跡方程為4x+3y=0或4x+3y-10=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出以下四個(gè)命題:
①若x2+y2=0,則x=y=0
②“若a,b都是偶數(shù),則a+b是偶數(shù)”的逆否命題
③“若x=2,則x2-3x+2=0”的逆命題
④“若兩個(gè)三角形全等,則這兩個(gè)三角形的面積相等”的否命題
其中真命題的序號(hào)是( 。
A.B.①②③④C.①②③D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案