A. | 奇函數(shù),在(0,+∞)是增函數(shù) | B. | 奇函數(shù),在(0,+∞)是減函數(shù) | ||
C. | 偶函數(shù),在(0,+∞)是增函數(shù) | D. | 偶函數(shù),在(0,+∞)是減函數(shù) |
分析 根據(jù)函數(shù)奇偶性和單調(diào)性的定義和性質(zhì)進行判斷即可.
解答 解:f(-x)=$\frac{{2}^{-x}+{2}^{x}}{2}$=f(x),
則函數(shù)f(x)為偶函數(shù),
當x>0時,設0<x1<x2,
則f(x1)-f(x2)=$\frac{1}{2}$(2${\;}^{{x}_{1}}$+$\frac{1}{{2}^{{x}_{1}}}$-2${\;}^{{x}_{2}}$-$\frac{1}{{2}^{{x}_{2}}}$)=$\frac{1}{2}$[(2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$)+$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$]=$\frac{1}{2}$[(2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$)•(1-$\frac{1}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$)=$\frac{1}{2}$•(2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$)•$\frac{{2}^{{x}_{1}}{2}^{{x}_{2}}-1}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$,
∵0<x1<x2,
∴2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$<0,2${\;}^{{x}_{1}}$•2${\;}^{{x}_{2}}$>1,即2${\;}^{{x}_{1}}$•2${\;}^{{x}_{2}}$-1>0,
∴f(x1)-f(x2)<0,
f(x1)<f(x2),
即函數(shù)f(x)在(0,+∞)上為增函數(shù),
故選:C
點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,利用函數(shù)奇偶性和單調(diào)性的定義是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (1,2) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x+4y-12=0 | B. | 3x-4y-12=0 | ||
C. | 3x-4y+12=0 | D. | 3x-4y+12=0或3x-4y-12=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com