12.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≤0}\\{y≥k}\end{array}\right.$,且目標(biāo)函數(shù)z=3x+y取得最大值為11,則k=-1.

分析 先畫出滿足條件的平面區(qū)域,由z=3x+z得:y=-3x+z,顯然直線y=-3x+z過(guò)(3-k,k)時(shí)z取到最大值11,代入求出k的值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x+y-3=0}\\{y=k}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=3-k}\\{y=k}\end{array}\right.$,
由z=3x+z得:y=-3x+z,
顯然直線y=-3x+z過(guò)(3-k,k)時(shí)z取到最大值11,
故z=9-3k+k=11,解得:k=-1,
故答案為:-1.

點(diǎn)評(píng) 本題考察了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考察數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知a,b,c成等比數(shù)列,且cosB=$\frac{3}{4}$.
(1)求$\frac{c}{a}$的值;
(2)設(shè)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)P(x,y)滿足$\sqrt{{x^2}+{{(y+3)}^2}}+\sqrt{{x^2}+{{(y-3)}^2}}=10$,則動(dòng)點(diǎn)P的軌跡是( 。
A.雙曲線B.橢圓C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某民營(yíng)企業(yè)生產(chǎn)甲乙兩種產(chǎn)品.根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),甲產(chǎn)品的利潤(rùn) P(x)與投資額x成正比,其關(guān)系如圖1;乙產(chǎn)品的利潤(rùn)Q(x)與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2(利潤(rùn)與投資單位:萬(wàn)元).
(1)試寫出利潤(rùn) P(x)和Q(x)的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到3萬(wàn)元資金,并全部投入甲乙兩種產(chǎn)品的生產(chǎn).問(wèn)怎樣分配這3萬(wàn)元資金,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“0<a<b”是“($\frac{1}{4}$)a>($\frac{1}{4}$)b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}$)(ω>0)的最小正周期為4π,則(  )
A.函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱B.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱
C.函數(shù)f(x)的圖象在($\frac{π}{2}$,π)上單調(diào)遞減D.函數(shù)f(x)的圖象在($\frac{π}{2}$,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求證:(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{3}^{4}}$)…(1+$\frac{1}{{n}^{4}}$)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.(重點(diǎn)中學(xué)做)已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,(x<1)}\\{lnx,(x≥1)}\end{array}\right.$,若關(guān)于x的方程f(x)=ax有且僅有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$f(x)=\frac{{{2^x}+{2^{-x}}}}{2}$是( 。
A.奇函數(shù),在(0,+∞)是增函數(shù)B.奇函數(shù),在(0,+∞)是減函數(shù)
C.偶函數(shù),在(0,+∞)是增函數(shù)D.偶函數(shù),在(0,+∞)是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案