1.將4×5×6×7×…×(n-1)n用排列數(shù)表示為${A}_{n}^{n-3}$.

分析 根據(jù)排列數(shù)的公式,即可得出結(jié)論.

解答 解:根據(jù)排列數(shù)的公式知,
4×5×6×7×…×(n-1)n=$A_n^{n-3}$.
故答案為:${A}_{n}^{n-3}$.

點(diǎn)評(píng) 本題考查了排列數(shù)的定義與公式表示的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$上的正射影$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線(xiàn)C:x2-y2=2,記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線(xiàn)l與雙曲線(xiàn)C相交于不同的點(diǎn)E、F,若△OEF的面積為2$\sqrt{2}$,則直線(xiàn)l的方程為( 。
A.y=$\sqrt{2}$x+2B.y=-$\sqrt{2}$x+2C.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x-2D.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),令F(x)=(x-b)f(x-b)+2016,若b是a、c的等差中項(xiàng),則F(a)+F(c)=4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.只用1,2,3三個(gè)數(shù)字組成一個(gè)四位數(shù),規(guī)定這三個(gè)數(shù)必須同時(shí)使用,且同一數(shù)字不能相鄰出現(xiàn),這樣的四位數(shù)共有18個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)a=20.3,b=30.2,c=70.1,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn)與拋物線(xiàn)y2=4x的焦點(diǎn)重合,且雙曲線(xiàn)的實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,則該雙曲線(xiàn)的方程為(  )
A.5x2-$\frac{5}{4}$y2=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{4}$=1D.5x2-$\frac{4}{5}$y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin45°cos105°+sin45°sin15°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案