17.已知:a∈R,b∈R,若集合{a,$\frac{a}$,1}={a2,a+b,0},則a2015+b2015的值為( 。
A.-2B.-1C.1D.2

分析 根據(jù)兩集合相等,對應(yīng)元素相同,列出方程,求出a與b的值即可.

解答 解:∵a∈R,b∈R,且{a,$\frac{a}$,1}={a2,a+b,0},
∴分母a≠0,
∴b=0,a2=1,且a2≠a+b,
解得a=-1;
∴a2015+b2015=-1.
故選:B.

點(diǎn)評 本題考查了集合相等的應(yīng)用問題,也考查了解方程的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=$\frac{2}{x}$-lnx的零點(diǎn)所在區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.規(guī)定一雙筷子由同色的兩支組成,現(xiàn)黑,白,黃筷子各8支,若不用眼睛看,任意地取出若干支筷子,要做到使被取出的筷子至少有一雙同色,則至少應(yīng)取出4只筷子.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求A∩B,(CUA)∩(CUB),(A∩B)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,點(diǎn)D在BC上,AD平分∠BAC,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則$\overrightarrow{AD}$=(  )
A.$\frac{2}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$B.$\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$C.$\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$D.$\frac{3}{5}\overrightarrow{a}+\frac{2}{5}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列敘述中,正確的個數(shù)是( 。
①命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”;
②O是△ABC所在平面上一點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,則O是△ABC的垂心;
③“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要條件;
④命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)是奇函數(shù),且定義域?yàn)椋?∞,0)∪(0,+∞).若x<0時,f(x)=lg$\frac{1-x}{2}$.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)對于函數(shù)f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直線y=$\frac{1}{2}$x+b能作為函數(shù)f(x)=sinx圖象的切線嗎?若能,求出切點(diǎn)坐標(biāo);若不能,簡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等比數(shù)列{an}的首項(xiàng)a1=1,公比為x(x>0),其前n項(xiàng)和為記為Sn,則函數(shù)$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$的解析式為$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

查看答案和解析>>

同步練習(xí)冊答案